Олимпиадные задачи по математике для 5-9 класса - сложность 4 с решениями

Две окружности<i> σ<sub>1</sub> </i>и<i> σ<sub>2</sub> </i>пересекаются в точках<i> A </i>и<i> B </i>. Пусть<i> PQ </i>и<i> RS </i>– отрезки общих внешних касательных к этим окружностям (точки<i> P </i>и<i> R </i>лежат на<i> σ<sub>1</sub> </i>, точки<i> Q </i>и<i> S </i>– на<i> σ<sub>2</sub> </i>). Оказалось, что<i> RB|| PQ </i>. Луч<i> RB </i>вторично пересекает<i> σ<sub>2</sub> </i>в точке<i> W </i>. Найдите отношение<i> RB/BW </i>.

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более <i>N</i> различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на  <i>N</i> + 2  республики так, чтобы никакие два города из одной республики не были соединены дорогой.

За круглым столом сидят 100 представителей 50 стран, по двое от каждой страны. Докажите, что их можно разбить на две группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и каждый человек находился в одной группе не более чем с одним своим соседом.

В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов?

Четырёхугольник <i>ABCD</i> является одновременно и вписанным, и описанным, причём вписанная в <i>ABCD</i> окружность касается его сторон <i>AB, BC, CD</i> и <i>AD</i> в точках <i>K, L, M, N</i> соответственно. Биссектрисы внешних углов <i>A</i> и <i>B</i> четырёхугольника пересекаются в точке <i>K'</i>, внешних углов <i>B</i> и <i>C</i> – в точке <i>L'</i>, внешних углов <i>C</i> и <i>D</i> – в точке <i>M'</i>, внешних углов <i>D</i> и <i>A</i> – в точке <i>N'</i>. Докажите, что прямые <i>KK', LL', MM'</i> и <i>NN'</i> проход...

Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных  <i>m, n</i> > 100  сумма чисел в любом прямоугольнике <i>m</i>×<i>n</i> клеток делилась на  <i>m + n</i>?

На плоскости отмечено несколько точек. Для любых трех из них существует декартова система координат (т.е. перпендикулярные оси и общий масштаб), в которой эти точки имеют целые координаты. Докажите, что существует декартова система координат, в которой все отмеченные точки имеют целые координаты.

По окружности расставлено 100 натуральных чисел, взаимно простых в совокупности. Разрешается прибавлять к любому числу наибольший общий делитель его соседей. Докажите, что при помощи таких операций можно сделать все числа попарно взаимно простыми.

В некоторых клетках доски 2<i>n</i>×2<i>n</i> стоят чёрные и белые фишки. С доски сначала снимаются все чёрные фишки, которые стоят в одной вертикали с какой-то белой, а затем все белые фишки, стоящие в одной горизонтали с какой-нибудь из оставшихся чёрных. Докажите, что либо чёрных, либо белых фишек на доске осталось не более <i>n</i>².

Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.

Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.

На диагонали <i>AC</i> выпуклого четырёхугольника <i>ABCD</i> выбрана точка <i>K</i>, для которой  <i>KD = DC</i>, ∠<i>BAC</i> = ½ <i>KDC</i>,  ∠<i>DAC</i> = ½ ∠<i>KBC</i>.

Докажите, что  ∠<i>KDA</i> = ∠<i>BCA</i>  или  ∠<i>KDA</i> = ∠<i>KBA</i>.

На высотах (но не на их продолжениях) остроугольного треугольника<i> ABC </i>взяты точки<i> A</i>1,<i> B</i>1,<i> C</i>1, отличные от точки пересечения высот<i> H </i>, причём сумма площадей треугольников<i> ABC</i>1,<i> BCA</i>1,<i> CAB</i>1равна площади треугольника<i> ABC </i>. Докажите, что окружность, описанная около треугольника<i> A</i>1<i>B</i>1<i>C</i>1, проходит через точку<i> H </i>.

Существует ли такая бесконечная возрастающая последовательность <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... натуральных чисел, что сумма любых двух различных членов последовательности взаимно проста с суммой любых трёх различных членов последовательности?

У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка