Олимпиадные задачи по математике для 10 класса - сложность 4-5 с решениями

Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.

Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?

Окружность с центром <i> I </i>касается сторон <i> AB </i>,<i> BC </i>,<i> AC </i>неравнобедренного треугольника <i> ABC </i>в точках<i> C<sub>1</sub> </i>,<i> A<sub>1</sub> </i>,<i> B<sub>1</sub> </i>соответственно. Окружности <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>вписаны в четырехугольники <i> BA<sub>1</sub>IC<sub>1</sub> </i>и <i> CA<sub>1</sub>IB<sub>1</sub> </i>соответственно. Докажите, что общая внутренняя касательная к <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>, отличная от ...

По кругу стоят2009целых неотрицательных чисел, не превышающих 100. Разрешается прибавить по1к двум соседним числам, причем с любыми двумя соседними числами эту операцию можно проделать не более<i> k </i> раз. При каком наименьшем<i> k </i>все числа гарантированно можно сделать равными?

На плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

В треугольной пирамиде <i> ABCD </i>все плоские углы при вершинах — не прямые, а точки пересечения высот в треугольниках <i> ABC </i>,<i> ABD </i>,<i> ACD </i>лежат на одной прямой. Докажите, что центр описанной сферы пирамиды лежит в плоскости, проходящей через середины ребер <i> AB </i>,<i> AC </i>,<i> AD </i>.

В стране есть <i>N</i> городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого <i>k</i>  (2 ≤ <i>k ≤ N</i>)  при любом выборе <i>k</i> городов количество авиалиний между этими городами не будет превосходить  2<i>k</i> – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

Существуют ли такие ненулевые числа <i>a, b, c</i>, что при любом  <i>n</i> > 3  можно найти многочлен вида  <i>P<sub>n</sub></i>(<i>x</i>) = <i>x<sup>n</sup> + ... + ax</i>² + <i>bx + c</i>,  имеющий ровно <i>n</i> (не обязательно различных) целых корней?

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

Вписанная окружность<i> σ </i>треугольника<i> ABC </i>касается его сторон<i> BC </i>,<i> AC </i>,<i> AB </i>в точках<i> A' </i>,<i> B' </i>,<i> C' </i>соответственно. Точки<i> K </i>и<i> L </i>на окружности<i> σ </i>таковы, что<i> <img src="/storage/problem-media/111797/problem_111797_img_2.gif"> AKB'+<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> BKA'=<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> ALB'+<img src="/storage/problem-media/111797/problem_111797_img_2.gif"> BLA'=</i>180<i><sup>o</sup&g...

На столе лежат купюры достоинством 1, 2,<i> .. </i>,2<i>n </i>тугриков. Двое ходят по очереди. Каждым ходом игрок снимает со стола две купюры, большую отдает сопернику, а меньшую забирает себе. Каждый стремится получить как можно больше денег. Сколько тугриков получит начинающий при правильной игре?

Какое минимальное количество клеток можно закрасить черным в белом квадрате 300×300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?

а) В 99 ящиках лежат яблоки и апельсины.

Докажите, что можно так выбрать 50 ящиков, что в них окажется не менее половины всех яблок и не менее половины всех апельсинов. б) В 100 ящиках лежат яблоки и апельсины.

Докажите, что можно так выбрать 34 ящика, что в них окажется не менее трети всех яблок и не менее трети всех апельсинов.

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

Каждая клетка клетчатой плоскости раскрашена в один из<i>n</i>² цветов так, что в каждом квадрате из<i>n×</i>клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в<i>n</i>цветов.

Сколькими способами числа 2<sup>0</sup>, 2<sup>1</sup>, 2&sup2, ..., 2<sup>2005</sup> можно разбить на два непустых множества <i>A</i> и <i>B</i> так, чтобы уравнение  <i>x</i>&sup2 – <i>S</i>(<i>A</i>)<i>x + S</i>(<i>B</i>) = 0,  где <i>S</i>(<i>M</i>) – сумма чисел множества <i>M</i>, имело целый корень?

На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?

Существует ли такое натуральное число  <i>n</i> > 10<sup>1000</sup>,  не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?

В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.

Последовательность {<i>a<sub>n</sub></i>} строится следующим образом:  <i>a</i><sub>1</sub> = <i>p</i>  – простое число, имеющее ровно 300 ненулевых цифр, <i>a</i><sub><i>n</i>+1</sub> – период десятичной дроби <sup>1</sup>/<sub><i>a<sub>n</sub></i></sub>, умноженный на 2. Найдите число <i>a</i><sub>2003</sub>.

На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.

На координатной плоскости дан выпуклый пятиугольник<i> ABCDE </i>с вершинами в целых точках. Докажите, что внутри или на границе пятиугольника<i> A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>E<sub>1</sub> </i><i> (см. рис.) </i>есть хотя бы одна целая точка. <center><i> <img src="/storage/problem-media/109709/problem_109709_img_2.gif"> </i></center>

Сфера, вписанная в тетраэдр <i>ABCD</i>, касается его граней в точках <i>A', B', C', D'</i>. Отрезки <i>AA'</i> и <i>BB'</i> пересекаются, и точка их пересечения лежит на вписанной сфере. Доказать, что отрезки <i>CC'</i> и <i>DD'</i> тоже пересекаются на вписанной сфере.

Дано целое $n>2$. На сфере радиуса 1 требуется расположить $n$ попарно не пересекающихся дуг больших окружностей, все дуги равной длины $\alpha$. Докажите, что

а) при любом $\alpha<\pi+\frac{2\pi}n$ это возможно;

б) при любом $\alpha>\pi+\frac{2\pi}n$ это невозможно.

На плоскости дано множество <i>S</i>, состоящее из чётного числа точек, никакие три из которых не лежат на одной прямой.

Докажите, что <i>S</i> можно разбить на два множества <i>X</i> и <i>Y</i> так, что выпуклые оболочки  conv <i>X</i>  и  conv <i>Y</i>  имеют поровну вершин.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка