Олимпиадные задачи по математике для 10 класса - сложность 2-3 с решениями
В каждой вершине выпуклого 100-угольника написано по два различных числа. Докажите, что можно вычеркнуть по одному числу в каждой вершине так, чтобы оставшиеся числа в каждых двух соседних вершинах были различными.
Цифры натурального числа $n$ > 1 записали в обратном порядке и результат умножили на $n$. Могло ли получиться число, записываемое только единицами?
В стране есть <i>n</i> > 1 городов, некоторые пары городов соединены двусторонними беспосадочными авиарейсами. При этом между каждыми двумя городами существует единственный авиамаршрут (возможно, с пересадками). Мэр каждого города <i>X</i> подсчитал количество таких нумераций всех городов числами от 1 до <i>n</i>, что на любом авиамаршруте, начинающемся в <i>X</i>, номера городов идут в порядке возрастания. Все мэры, кроме одного, заметили, что их результаты подсчётов делятся на 2016. Докажите, что и у оставшегося мэра результат также делится на 2016.
Внутри выпуклого 100-угольника выбрана точка <i>X</i>, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка <i>X</i> будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.