Олимпиадные задачи по математике для 11 класса - сложность 3-5 с решениями
На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.
Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?
На кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.
На окружности отметили <i>n</i> точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения <i>n</i>, при которых это возможно.
Дан выпуклый <i>n</i>-угольник <i>A</i><sub>1</sub>...<i>A<sub>n</sub></i>. Пусть <i>P<sub>i</sub></i> (<i>i</i> = 1, ..., <i>n</i>) – такая точка на его границе, что прямая <i>A<sub>i</sub>P<sub>i</sub></i> делит его площадь пополам. Известно, что все точки <i>P<sub>i</sub></i> не совпадают с вершинами и лежат на <i>k</i> сторонах <i>n</i>-угольника. Каково а) наименьшее; б) наибольшее возможное значение <i>k</i> при каждом данном <i>n</i>?
На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.
Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?
Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.
Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего <i>n</i>-угольника с его вершинами, делят <i>n</i>-угольник на <i>n</i> равных треугольников.
При каком наименьшем <i>n</i> это возможно?
Дан многочлен <i>P</i>(<i>x</i>) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., такая, что <i>P</i>(<i>a</i><sub>1</sub>) = 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub> и т. д. Докажите, что не все числа в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... различны.
Пусть <i>P</i>(<i>x</i>) – многочлен со старшим коэффициентом 1, а последовательность целых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... такова, что <i>P</i>(<i>a</i><sub>1</sub>)= 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub> и т. д. Числа в последовательности не повторяются. Какую степень может иметь <i>P</i>(<i>x</i>)?
В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за одного и того же кандидата из числа оставшихся. На очередных выборах баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре <i>k</i>-е место по числу голосов. Определ...
Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.
Найдите расстановку чисел, при которой полученная сумма наибольшая.
Дан многочлен <i>P</i>(<i>x</i>) с действительными коэффициентами. Бесконечная последовательность различных натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... такова, что
<i>P</i>(<i>a</i><sub>1</sub>) = 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>, и т.д. Какую степень может иметь <i>P</i>(<i>x</i>)?
Дано натуральное число $n$. Натуральное число $m$ назовём<i>удачным</i>, если найдутся $m$ последовательных натуральных чисел, сумма которых равна сумме $n$ следующих за ними натуральных чисел. Докажите, что количество удачных чисел нечётно.
Прямоугольная клетчатая доска покрашена в шахматном порядке в чёрный и белый цвета и разбита на доминошки $1\times 2$. Везде, где граничат по стороне горизонтальная и вертикальная доминошки, стоит дверка. Она покрашена в тот же цвет, что и примыкающая клетка той доминошки, которая примыкает короткой стороной. Обязательно ли белых дверок столько же, сколько чёрных?
Даны две строго возрастающие последовательности положительных чисел, в которых каждый член, начиная с третьего, равен сумме двух предыдущих. Известно, что каждая последовательность содержит хотя бы одно число, которого нет в другой последовательности. Какое наибольшее количество общих чисел может быть у этих последовательностей? <b>Замечание к условию.</b>Предполагается, что обе последовательности бесконечны, иначе совпадений, очевидно, может быть сколько угодно (можно взять первые $n$ членов последовательности Фибоначчи 1, 2, 3, 5, 8, 13, ... как первую последовательность, и члены со второго по $(n+1)$-й — как вторую).
Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
В таблице $44\times 44$ часть клеток синие, а остальные красные. Никакие синие клетки не граничат друг с другом по стороне. Множество красных клеток, наоборот, связно по сторонам (от любой красной клетки можно добраться до любой другой красной, переходя из клетки в клетку через общую сторону и не заходя в синие клетки). Докажите, что синих клеток в таблице меньше трети.
Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?
Прямая Эйлера неравнобедренного треугольника касается вписанной в него окружности. Докажите, что треугольник тупоугольный.
В турнире по теннису (где не бывает ничьих) участвовало более 4 спортсменов. Каждый игровой день каждый теннисист принимал участие ровно в одной игре. К завершению турнира каждый сыграл с каждым в точности один раз. Назовём игрока<i>упорным</i>, если он выиграл хотя бы один матч и после первой своей победы ни разу не проигрывал. Остальных игроков назовём<i>неупорными</i>. Верно ли, что игровых дней, когда была встреча между неупорными игроками, больше половины?
Доска 2$N$×2$N$ покрыта неперекрывающимися доминошками 1×2. По доске прошла<i>хромая</i>ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход<i>продольным</i>, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково а) наибольшее;
б) наименьшее возможное число продольных ходов?
Дан клетчатый квадрат $n\times n$, где $n$ > 1. <i>Кроссвордом</i> будем называть любое непустое множество его клеток, а <i>словом</i> – любую горизонтальную и любую вертикальную полоску (клетчатый прямоугольник шириной в одну клетку), целиком состоящую из клеток кроссворда и не содержащуюся ни в какой большей полоске из клеток кроссворда (ни горизонтальной, ни вертикальной). Пусть $x$ – количество слов в кроссворде, $y$ – наименьшее количество слов, которыми можно покрыть кроссворд. Найдите максимум отношения $\frac{x}{y}$ при данном $n$.
По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?
В таблице $n\times n$ стоят все целые числа от 1 до $n^2$, по одному в клетке. В каждой строке числа возрастают слева направо, в каждом столбце – снизу вверх. Докажите, что наименьшая возможная сумма чисел на главной диагонали, идущей сверху слева вниз направо, равна $1^2+2^2+\ldots+n^2$.