Олимпиадные задачи по математике для 1-6 класса - сложность 2-5 с решениями
В вершинах куба<i>ABCDEFGH</i>расставлены натуральные числа так, что числа в соседних (по ребру) вершинах отличаются не более чем на единицу. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу. (Пары диаметрально противоположных вершин куба: <i>A</i> и <i>G</i>, <i>B</i> и <i>H</i>, <i>C</i> и <i>E</i>, <i>D</i> и <i>F</i>.)
<img src="/storage/problem-media/103857/problem_103857_img_2.gif">
Задано правило, которое каждой паре чисел <i>x</i>, <i>y</i> ставит в соответствие некоторое число <i>x*y</i>, причём для любых <i>x, y, z</i> выполняются тождества:
1) <i>x</i>*<i>x</i> = 0,
2) <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i>*<i>y</i>) + <i>z</i>.
Найдите 1993*1932.
На доске написаны две суммы: 1 + 22 + 333 + 4444 + 55555 + 666666 +7777777 + 88888888 + 999999999
9 + 98 + 987 + 9876 + 98765 + 987654 + 9876543 + 98765432 + 987654321
Определите, какая из них больше (или они равны).