Олимпиадные задачи по математике для 11 класса - сложность 4-5 с решениями

Докажите, что для любого  <i>k</i> > 1  найдётся такая степень двойки, что среди <i>k</i> последних её цифр не менее половины составляют девятки.

(Например,  2<sup>12</sup> = ...96,  2<sup>53</sup> = ...992.)

Для каждого непрямоугольного треугольника <i>T</i> обозначим через <i>T</i><sub>1</sub> треугольник, вершинами которого служат основания высот треугольника <i>T</i>; через <i>T</i><sub>2</sub> – треугольник, вершинами которого служат основания высот треугольника <i>T</i><sub>1</sub>; аналогично определим треугольники <i>T</i><sub>3</sub>, <i>T</i><sub>4</sub> и так далее. Каким должен быть треугольник <i>T</i>, чтобы

  а) треугольник <i>T</i><sub>1</sub> был остроугольным?

  б) в последовательности <i>T</i><sub>1</sub>, <i>T</i><sub>2</sub>, <i>T</i&gt...

Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это.

Пусть<i>l</i><sub>1</sub>,<i>l</i><sub>2</sub>, ...,<nobr><i>l</i><sub><i>n</i></sub> —</nobr>несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке<i>X</i><sub>1</sub>,<i>X</i><sub>2</sub>, ...,<i>X</i><sub><i>n</i></sub>так, чтобы перпендикуляр, восставленный к прямой<i>l</i><sub><i>k</i></sub>в точке<i>X</i><sub><i>k</i></sub>(для любого натурального<nobr><i>k</i> < <i>n</i>),</nobr>проходил через точку<i>X...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка