Олимпиадные задачи по математике для 7 класса - сложность 1-4 с решениями

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

Дана незамкнутая несамопересекающаяся ломаная из 37 звеньев. Через каждое звено провели прямую.

Какое наименьшее число различных прямых могло получиться?

Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.

Какую максимальную сумму Петя может снять со счета, если других денег у него нет?

а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?

б) Тот же вопрос про число, начинающееся с 1.

в) Найдите для каждого <i>n</i> такое наименьшее  <i>k = k</i>(<i>n</i>),  что к каждому <i>n</i>-значному числу можно приписать еще <i>k</i> цифр так, чтобы полученное (<i>n+k</i>)-значное число было полным квадратом.

Шестизначное число начинается с цифры 5. Верно ли, что к нему всегда можно приписать справа шесть цифр так, чтобы получился полный квадрат?

Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.

Докажите, что для этой цели ему

  а) достаточно четырёх взвешиваний и

  б) недостаточно трёх.

10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:

  а) перевернуть четыре фишки, стоящие подряд;

&nbsp б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).

Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?

По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.

Укажите такое наименьшее число <i>A</i>, что в любом таком наборе чисел каждое из чисел не превышает <i>A</i>.

В лес за грибами пошли 11 девочек и <i>n</i> мальчиков. Вместе они собрали  <i>n</i>² + 9<i>n</i> – 2  гриба, причём все они собрали поровну грибов.

Кого было больше: мальчиков или девочек?

В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?

(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?

Рассмотрим все натуральные числа, в десятичной записи которых участвуют лишь цифры 1 и 0. Разбейте эти числа на два непересекающихся подмножества так, чтобы сумма любых двух различных чисел из одного и того же подмножества содержала в своей десятичной записи не менее двух единиц.

При каких <i>n</i> гири массами 1 г, 2 г, 3 г, ..., <i>n</i> г можно разложить на три равные по массе кучки?

Учитель назвал две различные ненулевые цифры. Коля хочет составить делящееся на $7$ семизначное число, в десятичной записи которого нет других цифр, кроме этих двух. Всегда ли Коля может это сделать, какие бы две цифры ни назвал учитель?

На асфальте нарисована полоса $1\times10$ для игры в «классики». Из центра первого квадрата надо сделать 9 прыжков по центрам квадратов (иногда вперёд, иногда назад) так, чтобы побывать в каждом квадрате по одному разу и закончить маршрут в последнем квадрате. Аня и Варя обе прошли полосу, и каждый очередной прыжок Ани был на то же расстояние, что и очередной прыжок Вари. Обязательно ли они пропрыгали квадраты в одном и том же порядке?

Существует ли число, которое может быть представлено в виде $\frac1n + \frac1m$, где $m$ и $n$ натуральные, не менее чем ста способами? Ответ объясните.

Для каждого из девяти натуральных чисел $n, 2n, 3n, ..., 9n$ выписали на доску первую слева цифру в его десятичной записи. При этом $n$ выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество?

У каждого из девяти натуральных чисел $n, 2n, 3n,\ldots,9n$ выписали первую слева цифру. Может ли при некотором натуральном $n$ среди девяти выписанных цифр быть не более четырёх различных?

а) У Тани есть 4 одинаковые с виду гири, массы которых равны 1000, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.) б) Тот же вопрос, если у весов левая чашка на 1 г легче правой, так что весы показывают равенство, если масса на левой чашке на 1 г больше, чем на правой.

На длинной ленте бумаги выписали все числа от 1 до 1000000 включительно (в некотором произвольном порядке). Затем ленту разрезали на кусочки по две цифры в каждом кусочке. Докажите, что в каком бы порядке ни выписывались числа, на кусочках встретятся все двузначные числа.

По кругу расставлено девять чисел – четыре единицы и пять нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают.

Могут ли через некоторое время все числа стать одинаковыми?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка