Олимпиадные задачи по математике для 9-11 класса - сложность 3-4 с решениями

Разность двух углов треугольника больше $90^{\circ}$. Докажите, что отношение радиусов его описанной и вписанной окружностей больше 4.

На диагонали <i>AC</i> вписанного четырёхугольника <i>ABCD</i> взяли произвольную точку <i>P</i> и из неё опустили перпендикуляры <i>PK, PL, PM, PN, PO</i> на прямые <i>AB, BC, CD, DA, BD</i> соответственно. Докажите, что расстояние от <i>P</i> до <i>KN</i> равно расстоянию от <i>O</i> до <i>ML</i>.

Диагонали вписанного четырёхугольника <i>ABCD</i> пересекаются в точке <i>M</i>, ∠<i>AMB</i> = 60°. На сторонах <i>AD</i> и <i>BC</i> во внешнюю сторону построены равносторонние треугольники <i>ADK</i> и <i>BCL</i>. Прямая <i>KL</i> пересекает описанную около <i>ABCD</i> окружность в точках <i>P</i> и <i>Q</i>. Докажите, что <i>PK = LQ</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка