Олимпиадные задачи по математике для 11 класса - сложность 2-4 с решениями
По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.
Найдутся ли такие функции <i>p</i>(<i>x</i>) и <i>q</i>(<i>x</i>), что <i>p</i>(<i>x</i>) – чётная функция, а <i>p</i>(<i>q</i>(<i>x</i>)) – нечётная функция (отличная от тождественно нулевой)?