Олимпиадные задачи по математике для 8-9 класса - сложность 1-4 с решениями
Внутри отрезка <i>АС</i> выбрана произвольная точка <i>В</i> и построены окружности с диаметрами <i>АВ</i> и <i>ВС</i>. На окружностях (в одной полуплоскости относительно <i>АС</i>) выбраны соответственно точки <i>M</i> и <i>L</i> так, что ∠<i>MBA</i> = ∠<i>LBC</i>. Точки <i>K</i> и <i>F</i> отмечены соответственно на лучах <i>ВМ</i> и <i>BL</i> так, что
<i>BK = BC</i> и <i>BF = AB</i>. Докажите, что точки <i>M, K, F</i> и <i>L</i> лежат на одной окружности.
Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел.
Укажите пять целых положительных чисел, сумма которых равна 20, а произведение — 420.
На прямой отметили несколько точек. После этого между каждыми двумя соседними точками отметили ещё по точке. Такое ''уплотнение'' повторили ещё дважды (всего 3 раза). В результате на прямой оказалось отмечено 113 точек. Сколько точек было отмечено первоначально?
Мальвина записала по порядку 2016 обыкновенных правильных дробей: ½, ⅓, ⅔, ¼, <sup>2</sup>/<sub>4</sub>, ¾, ... (в том числе, и сократимые). Дроби, значение которых меньше чем ½, она покрасила в красный цвет, а остальные дроби – в синий. На сколько количество красных дробей меньше количества синих?
Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?