Олимпиадные задачи по математике для 8-9 класса - сложность 1-2 с решениями

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:

  а) за 5 или менее;

  б) за 4 или менее;

  в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>

У Вани было некоторое количество печенья; он сколько-то съел, а потом к нему в гости пришла Таня, и оставшееся печенье они разделили поровну. Оказалось, что Ваня съел в пять раз больше печений, чем Таня. Какую долю от всего печенья Ваня съел к моменту Таниного прихода?

Известно, что квадратные уравнения  <i>ax</i>² + <i>bx + c</i> = 0  и  <i>bx</i>² + <i>cx + a</i> = 0  (<i>a, b</i> и <i>c</i> – отличные от нуля числа) имеют общий корень.

Найдите его.

Существуют ли такие натуральные числа <i>a, b</i> и <i>c</i>, что у каждого из уравнений  <i>ax</i>² + <i>bx + c</i> = 0,  <i>ax</i> + <i>bx – c</i> = 0,  <i>ax</i>² – <i>bx + c</i> = 0,  <i>ax</i>² – <i>bx – c</i> = 0  оба корня – целые?

Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)

Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49, а в третьей – 5. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли получить 105 кучек по одному камню в каждой?

Карлсон написал дробь <sup>10</sup>/<sub>97</sub>. Малыш может:

  1) прибавлять любое натуральное число к числителю и знаменателю одновременно,

  2) умножать числитель и знаменатель на одно и то же натуральное число. Сможет ли Малыш с помощью этих действий получить дробь,

  а) равную ½?  б) равную 1?

Шифр кодового замка является двузначным числом. Буратино забыл код, но помнит, что сумма цифр этого числа, сложенная с их произведением, равна самому числу. Напишите все возможные варианты кода, чтобы Буратино смог быстрее открыть замок.

Вася пишет на доске квадратное уравнение  <i>ax</i>² + <i>bx + c</i> = 0  с натуральными коэффициентами <i>a, b, c</i>. После этого Петя, если хочет, может заменить один или два знака "+" на "–". Если у получившегося уравнения оба корня целые, то выигрывает Вася, если же корней нет или хотя бы один из них нецелый – Петя. Может ли Вася подобрать коэффициенты уравнения так, чтобы наверняка выиграть у Пети?

Натуральное число <i>n</i> разрешается заменить на число <i>ab</i>, если  <i>a + b = n</i>  и числа <i>a</i> и <i>b</i> натуральные.

Можно ли с помощью таких замен получить из числа 22 число 2001?

Дана таблица <i>n</i>×<i>n</i>, в каждой её клетке записано число, причём все числа различны. В каждой строке отметили наименьшее число, и все отмеченные числа оказались в разных столбцах. Затем в каждом столбце отметили наименьшее число, и все отмеченные числа оказались в разных строках. Докажите, что оба раза отметили одни и те же числа. <h3>Решение</h3>Наименьшее число во всей таблице, очевидно, было отмечено оба раза. По условию ни одно из чисел, стоящих с ним в одной строке (одном столбце), не было отмечено ни разу. Поэтому оба раза было также отмечено наименьшее число в таблице, полученной из данной вычеркиванием этих строки и столбца. И так далее. <h3>Замечания</h3> 3 балла <h3>Источники и прецеденты использования</h3> &lt...

В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?

Положительные числа $a$ и $b$ таковы, что $a - b = a / b$. Что больше, $a + b$ или $a b$?

Буратино выложил на стол 2016 спичек и предложил Арлекину и Пьеро сыграть в игру, беря по очереди спички со стола: Арлекин может своим ходом брать либо 5 спичек, либо 26, а Пьеро – либо 9, либо 23. Не дождавшись начала игры, Буратино ушел, а когда он вернулся, партия уже закончилась. На столе осталось две спички, а проиграл тот, кто не смог сделать очередной ход. Хорошенько подумав, Буратино понял, кто ходил первым, и кто выиграл. Выясните это и вы!

Витя хочет найти такое выражение, состоящее из единиц, скобок, знаков "+" и "×" что

  - его значение равно 10;

  - если в этом выражении заменить все знаки "+" на знаки "×", а знаки "×" на знаки "+", всё равно получится 10.

Приведите пример такого выражения.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка