Олимпиадные задачи по математике для 11 класса - сложность 3-5 с решениями
Дана бесконечная последовательность чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... Известно, что для любого номера <i>k</i> можно указать такое натуральное число <i>t</i>, что
<i>a<sub>k</sub> = a<sub>k+t</sub> = a</i><sub><i>k</i>+2<i>t</i></sub> = ... Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное <i>T</i>, что <i>a<sub>k</sub> = a<sub>k+T</sub></i> при любом натуральном <i>k</i>?
Два квадрата расположены так, как показано на рисунке. Докажите, что площади заштрихованных четырёхугольников равны. <div align="center"><img src="/storage/problem-media/65649/problem_65649_img_2.png"></div>