Олимпиадные задачи по математике для 8 класса - сложность 1-3 с решениями
Внутри куба отмечены $10$ точек. Жора хочет выбрать натуральное число $n$ и разбить куб на $n^3$ одинаковых кубиков так, чтобы каждая отмеченная точка оказалась внутри (но не на границе) какого-то кубика. При каком наименьшем $M$ Жора гарантированно сможет выбрать число, не большее $M$?
Марина купила тур в Банановую страну с 5 по 22 октября. Ввозить и вывозить бананы через границу запрещено. Банановый король в начале каждого месяца издаёт указ о ценах. Цена одного банана в местной валюте на нужные числа октября приведена в таблице:<table align="center" border="1" text-align="center"> <tr> <td> $,$5 </td><td> $,$6 </td><td> $,$7 </td><td> $,$8 </td><td> $,$9 </td><td> 10 </td><td> 11 </td><td> 12 </td><td> 13 </td><td> 14 </td><td> 15 </td><td> 16 </td><td> 17 </td><td> 18 </td><td> 19 </td><td> 20 </td><td> 21 </td><td>...
Пусть $a$, $b$, $c$, $d$ и $n$ — натуральные числа. Докажите, что если числа $(a-b)(c-d)$ и $(a-c)(b-d)$ делятся на $n$, то и число $(a-d)(b-c)$ делится на $n$.
Саша и Илья должны были пробежать 600 метров. Но Саша первую половину <i>времени</i> бежал, а вторую – шёл. А Илья первую половину <i>дистанции</i> бежал, а вторую – шёл. И стартовали, и финишировали мальчики одновременно. Ходят они оба со скоростью 5 км/ч. С какой скоростью бежал Илья, если Саша бежал со скоростью 10 км/ч?
В спортивном клубе проходит первенство по теннису. Проигравший партию выбывает из борьбы (ничьих в теннисе не бывает). Пару для следующей партии определяет жребий. Первую партию судил приглашённый судья, а каждую следующую партию должен судить член клуба, не участвующий в ней и не судивший ранее. Могло ли так оказаться, что очередную партию судить некому?
На сторонах <i>AB</i>, <i>AC</i> треугольника <i>ABC</i> взяли такие точки <i>C</i><sub>1</sub>, <i>B</i><sub>1</sub> соответственно, что <i>BB</i><sub>1</sub> ⊥ <i>CC</i><sub>1</sub>. Точка <i>X</i> внутри треугольника такова, что
∠<i>XBC</i> = ∠<i>B</i><sub>1</sub><i>BA</i>, ∠<i>XCB</i> = ∠<i>C</i><sub>1</sub><i>CA</i>. Докажите, что ∠<i>B</i><sub>1</sub><i>XC</i><sub>1</sub> = 90° – ∠<i>A</i>.
Какое наибольшее количество белых и чёрных пешек можно расставить на клетчатой доске 9×9 (пешку, независимо от её цвета, можно ставить на любую клетку доски) так, чтобы никакая из них не била никакую другую (в том числе и своего цвета)? Белая пешка бьёт две соседние по диагонали клетки на соседней горизонтали с бóльшим номером, а чёрная – две соседние по диагонали клетки на соседней горизонтали с меньшим номером (см. рисунок).<div align="center"><img src="/storage/problem-media/65099/problem_65099_img_2.jpg"></div>