Олимпиадные задачи по математике для 1-7 класса - сложность 1-2 с решениями
Барон Мюнхгаузен взял несколько карточек и написал на каждой по натуральному числу (числа могут повторяться). Барон утверждает, что использовал только две различные цифры, зато когда он для каждой пары карточек нашёл сумму чисел на них, то среди первых цифр этих сумм встретились все цифры от 1 до 9. Могут ли слова барона быть правдой?
Петя загадал положительную несократимую дробь $x = \frac{m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$?