Олимпиадные задачи по математике для 2-9 класса - сложность 3-5 с решениями
На плоскости даны восемь точек общего положения. В ряд выписали площади всех 56 треугольников с вершинами в этих точках. Докажите, что между выписанными числами можно поставить знаки «$+$» и «$-$» так, чтобы полученное выражение равнялось нулю.
Назовем расстоянием между треугольниками $A_1A_2A_3$ и $B_1B_2B_3$ наименьшее из расстояний $A_iB_j$. Можно ли так расположить на плоскости пять треугольников, чтобы расстояние между любыми двумя из них равнялось сумме радиусов их описанных окружностей?
Пусть $A_1$, $A_2$, $A_3$, $A_4$ и $B_1$, $B_2$, $B_3$, $B_4$ – две четверки точек, не лежащих на одной окружности. Известно, что для любых $i$, $j$, $k$ радиусы описанных окружностей треугольников $A_iA_jA_k$ и $B_iB_jB_k$ равны. Обязательно ли $A_iA_j=B_iB_j$ для любых $i$, $j$?
Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?
Найдите все такие конфигурации из шести точек общего положения на плоскости, что треугольник, образованный любыми тремя из них, равен треугольнику, образованному тремя остальными.