Назад
Задача

Даны уравнения  ax² + bx + c = 0   (1)    и – ax² + bx + c   (2).     Доказать, что если x1 и x2 – соответственно какие-либо корни уравнений (1) и (2), то найдётся такой корень x3 уравнения  ½ ax² + bx + c,  что либо  x1x3x2,  либо  x1x3x2.

Решение

Пусть  f(x) = ½ ax² + bx + c.      Эти значения имеют разные знаки, поэтому один из корней трёхчлена расположен между x1 и x2.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет