Олимпиадные задачи по теме «Дроби» для 9 класса - сложность 2 с решениями

Мальчик с папой стоят на берегу моря. Если мальчик встанет на цыпочки, его глаза будут на высоте 1 м от поверхности моря, а если сядет папе на плечи, то на высоте 2 м. Во сколько раз дальше он будет видеть во втором случае. (Найдите ответ с точностью до 0,1, радиус Земли считайте равным 6000 км.)

Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи).

На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно &frac13; репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает <sup>1</sup>/<sub>7</sub> репок, а если заходит Мышка, то она выдергивает только <sup>1</sup>/<sub>12</sub> репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?

Даны такие натуральные числа<i>a</i>и<i>b</i>, что число  <sup><i>a</i>+1</sup>/<sub><i>b</i></sub>+<sup><i>b</i>+1</sup>/<sub><i>a</i></sub>  является целым. Докажите, что наибольший общий делитель чисел<i>a</i>и<i>b</i>не превосходит числа  <img align="absmiddle" src="/storage/problem-media/109551/problem_109551_img_2.gif">.

Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал &frac15; общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал <sup>1</sup>/<sub>7</sub> часть от общего количества. Сколько было школьников?

При разложении чисел <i>A</i> и <i>B</i> в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  <i>A + B</i>?

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:   <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.

Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например,  <sup>49</sup>/<sub>98</sub> = <sup>4</sup>/<sub>8</sub>.  Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".

Число <sup>1</sup>/<sub>42</sub> разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

Найти все несократимые дроби <sup><i>а</i></sup>/<sub><i>b</i></sub>, представимые в виде <i>b,а</i> (запятая разделяет десятичные записи натуральных чисел <i>b</i> и <i>а</i>).

На острове &frac23; всех мужчин женаты и &frac35; всех женщин замужем. Какая доля населения острова состоит в браке?

Сравнив дроби  <sup>111110</sup>/<sub>111111</sub>,  <sup>222221</sup>/<sub>222223</sub>,  <sup>333331</sup>/<sub>333334</sub>,  расположите их в порядке возрастания.

В треугольнике <i>ABC</i> с углом <i>B</i>, равным 50°, и стороной  <i>BC</i> = 3  на высоте <i>BH</i> взята такая точка <i>D</i>, что  ∠<i>ADC</i> = 130°  и  <i>AD</i> = <img width="30" height="42" align="MIDDLE" border="0" src="/storage/problem-media/102702/problem_102702_img_2.gif">.

Найдите угол между прямыми <i>AD</i> и <i>BC</i>, а также угол <i>CBH</i>.

Можно ли из последовательности  1, ½, &frac13;, ... выбрать (сохраняя порядок)

  а) сто чисел,

  б) бесконечную подпоследовательность чисел,

из которых каждое, начиная с третьего, равно разности двух предыдущих (<i>a<sub>k</sub> = a</i><sub><i>k</i>–2</sub> – <i>a</i><sub><i>k</i>–1</sub>)?

{<i>a<sub>n</sub></i>} – последовательность чисел между 0 и 1, в которой следом за <i>x</i> идёт  1 – |1 – 2<i>x</i>|.

  а) Докажите, что если <i>a</i><sub>1</sub> рационально, то последовательность, начиная с некоторого места, периодическая.

  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то <i>a</i><sub>1</sub> рационально.

Докажите, что

<img align="middle" src="/storage/problem-media/98103/problem_98103_img_2.gif">

Докажите, что произведение 99 дробей   <img align="absmiddle" src="/storage/problem-media/98085/problem_98085_img_2.gif">   где  <i>k</i> = 2, 3, ..., 100,  больше &frac23;.

Дано:

<img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_2.gif">

Докажите, что   <img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_3.gif">

Докажите, что  <img src="/storage/problem-media/88321/problem_88321_img_2.gif" width="135" height="41" align="middle">.

Увеличится или уменьшится сумма  <img src="/storage/problem-media/88294/problem_88294_img_2.gif" width="172" height="41" align="middle">,  если все слагаемые в ней заменить на <sup>1</sup>/<sub>150</sub>?

<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a<sub>n</sub></i>, ... – возрастающая последовательность натуральных чисел. Известно, что  <i>a</i><sub><i>n</i>+1</sub> ≤ 10<i>a<sub>n</sub></i>  при всех натуральных <i>n</i>.

Доказать, что бесконечная десятичная дробь 0,<i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub>..., полученная приписыванием этих чисел друг к другу, непериодическая.

Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.

Решить в целых положительных числах уравнение

<div align="center"><img src="/storage/problem-media/78143/problem_78143_img_2.gif"></div>

Решить в натуральных числах уравнение <div align="center"><img src="/storage/problem-media/78138/problem_78138_img_2.gif"></div>

Пусть <i>a, b, c, d, l</i> – целые числа. Докажите, что если дробь   <img width="34" height="35" align="MIDDLE" border="0" src="/storage/problem-media/78068/problem_78068_img_2.gif">  сократима на число <i>k</i>, то  <i>ad – bc</i>  делится на <i>k</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка