Олимпиадные задачи по теме «Дроби» для 9-10 класса - сложность 2 с решениями

Мальчик с папой стоят на берегу моря. Если мальчик встанет на цыпочки, его глаза будут на высоте 1 м от поверхности моря, а если сядет папе на плечи, то на высоте 2 м. Во сколько раз дальше он будет видеть во втором случае. (Найдите ответ с точностью до 0,1, радиус Земли считайте равным 6000 км.)

Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи).

На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно &frac13; репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает <sup>1</sup>/<sub>7</sub> репок, а если заходит Мышка, то она выдергивает только <sup>1</sup>/<sub>12</sub> репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?

На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.

Даны такие натуральные числа<i>a</i>и<i>b</i>, что число  <sup><i>a</i>+1</sup>/<sub><i>b</i></sub>+<sup><i>b</i>+1</sup>/<sub><i>a</i></sub>  является целым. Докажите, что наибольший общий делитель чисел<i>a</i>и<i>b</i>не превосходит числа  <img align="absmiddle" src="/storage/problem-media/109551/problem_109551_img_2.gif">.

Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал &frac15; общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал <sup>1</sup>/<sub>7</sub> часть от общего количества. Сколько было школьников?

При разложении чисел <i>A</i> и <i>B</i> в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  <i>A + B</i>?

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:   <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.

Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например,  <sup>49</sup>/<sub>98</sub> = <sup>4</sup>/<sub>8</sub>.  Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".

Число <sup>1</sup>/<sub>42</sub> разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

Найти все несократимые дроби <sup><i>а</i></sup>/<sub><i>b</i></sub>, представимые в виде <i>b,а</i> (запятая разделяет десятичные записи натуральных чисел <i>b</i> и <i>а</i>).

На острове &frac23; всех мужчин женаты и &frac35; всех женщин замужем. Какая доля населения острова состоит в браке?

Сравнив дроби  <sup>111110</sup>/<sub>111111</sub>,  <sup>222221</sup>/<sub>222223</sub>,  <sup>333331</sup>/<sub>333334</sub>,  расположите их в порядке возрастания.

В треугольнике <i>ABC</i> с углом <i>B</i>, равным 50°, и стороной  <i>BC</i> = 3  на высоте <i>BH</i> взята такая точка <i>D</i>, что  ∠<i>ADC</i> = 130°  и  <i>AD</i> = <img width="30" height="42" align="MIDDLE" border="0" src="/storage/problem-media/102702/problem_102702_img_2.gif">.

Найдите угол между прямыми <i>AD</i> и <i>BC</i>, а также угол <i>CBH</i>.

Можно ли из последовательности  1, ½, &frac13;, ... выбрать (сохраняя порядок)

  а) сто чисел,

  б) бесконечную подпоследовательность чисел,

из которых каждое, начиная с третьего, равно разности двух предыдущих (<i>a<sub>k</sub> = a</i><sub><i>k</i>–2</sub> – <i>a</i><sub><i>k</i>–1</sub>)?

{<i>a<sub>n</sub></i>} – последовательность чисел между 0 и 1, в которой следом за <i>x</i> идёт  1 – |1 – 2<i>x</i>|.

  а) Докажите, что если <i>a</i><sub>1</sub> рационально, то последовательность, начиная с некоторого места, периодическая.

  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то <i>a</i><sub>1</sub> рационально.

Докажите, что

<img align="middle" src="/storage/problem-media/98103/problem_98103_img_2.gif">

Докажите, что произведение 99 дробей   <img align="absmiddle" src="/storage/problem-media/98085/problem_98085_img_2.gif">   где  <i>k</i> = 2, 3, ..., 100,  больше &frac23;.

Дано:

<img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_2.gif">

Докажите, что   <img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_3.gif">

Докажите, что  <img src="/storage/problem-media/88321/problem_88321_img_2.gif" width="135" height="41" align="middle">.

Увеличится или уменьшится сумма  <img src="/storage/problem-media/88294/problem_88294_img_2.gif" width="172" height="41" align="middle">,  если все слагаемые в ней заменить на <sup>1</sup>/<sub>150</sub>?

<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a<sub>n</sub></i>, ... – возрастающая последовательность натуральных чисел. Известно, что  <i>a</i><sub><i>n</i>+1</sub> ≤ 10<i>a<sub>n</sub></i>  при всех натуральных <i>n</i>.

Доказать, что бесконечная десятичная дробь 0,<i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub>..., полученная приписыванием этих чисел друг к другу, непериодическая.

Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.

Решить в целых положительных числах уравнение

<div align="center"><img src="/storage/problem-media/78143/problem_78143_img_2.gif"></div>

Решить в натуральных числах уравнение <div align="center"><img src="/storage/problem-media/78138/problem_78138_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка