Олимпиадные задачи по теме «Последовательности» для 5-9 класса - сложность 1-2 с решениями

Можно ли в записи  2013² – 2012² – ... – 2² – 1²  некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?

Вокруг стола пустили пакет с семечками. Первый взял 1 семечку, второй – 2, третий – 3 и так далее: каждый следующий брал на одну семечку больше. Известно, что на втором круге было взято в сумме на 100 семечек больше, чем на первом. Сколько человек сидело за столом?

На доске записаны в ряд сто чисел, отличных от нуля. Известно, что каждое число, кроме первого и последнего, является произведением двух соседних с ним чисел. Первое число – это 7. Какое число последнее?

На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.

На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19  (6·1 + 13 = 19).  Какое число можно будет прочитать на доске через час?

Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?

На доске написаны девять приведённых квадратных трёхчленов:  <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>,  <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>,  ...,  <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub>  и  <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub>  – арифметические прогрессии. Оказалось, что сумма все...

На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть ещё два, потом – ещё три, и, наконец, стереть ещё четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?

Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

Последовательность чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  задана условиями  <i>a</i><sub>1</sub> = 1,  <i>a</i><sub>2</sub> = 143  и   <img align="absmiddle" src="/storage/problem-media/116589/problem_116589_img_2.gif">   при всех  <i>n</i> ≥ 2.

Докажите, что все члены последовательности – целые числа.

Сколько существует таких натуральных <i>n</i>, не превосходящих 2012, что сумма  1<sup><i>n</i></sup> + 2<sup><i>n</i></sup> + 3<sup><i>n</i></sup> + 4<sup><i>n</i></sup>  оканчивается на 0?

Костя посадил вдоль дорожки некоторое количество луковиц тюльпанов. Потом пришла Таня и между каждой парой соседних посаженных луковиц посадила новую луковицу. Потом пришла Инна и между каждой парой соседних луковиц, посаженных до неё, посадила новую луковицу. Потом пришёл Дима и сделал то же самое. Все посаженные луковицы взошли и расцвело 113 тюльпанов. Сколько луковиц посадил Костя?

Функция <i>f</i>(<i>x</i>) определена на положительной полуоси и принимает только положительные значения. Известно, что  <i>f</i>(1) + <i>f</i>(2) = 10  и  <img align="absmiddle" src="/storage/problem-media/116433/problem_116433_img_2.gif">  при любых <i>а</i> и <i>b</i>. Найдите <i>f</i>(2<sup>2011</sup>).

В вершинах 33-угольника записали в некотором порядке целые числа от 1 до 33. Затем на каждой стороне написали сумму чисел в её концах.

Могут ли на сторонах оказаться 33 последовательных целых числа (в каком-нибудь порядке)?

Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла?

Двадцать детей – десять мальчиков и десять девочек – встали в ряд. Каждый мальчик сказал, сколько детей стоит справа от него, а каждая девочка – сколько детей стоит слева от неё. Докажите, что сумма чисел, названных мальчиками, равна сумме чисел, названных девочками.

Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?<div align="center"><img src="/storage/problem-media/115472/problem_115472_img_2.gif"></div>

Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

Все целые числа от<i> -</i>33до100включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число?

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (<i>k</i>-й сдвиг происходит на2<i><sup>k-</sup></i>1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?

Какова наибольшая длина арифметической прогрессии из натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> с разностью 2, обладающей свойством:  <img align="absmiddle" src="/storage/problem-media/110093/problem_110093_img_2.gif">  – простое при всех  <i>k</i> = 1, 2, ..., <i>n</i>?

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя последовательными членами арифметической прогрессии. Найдите все такие треугольники.

На доску последовательно выписываются числа  <i>a</i><sub>1</sub> = 1,  <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... по следующим правилам: <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub></i> – 2,  если число  <i>a<sub>n</sub></i> – 2  – натуральное и еще не выписано на доску, в противном случае  <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub></i> + 3.  Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.

Докажите тождество <center><i> <img src="/storage/problem-media/109569/problem_109569_img_2.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_3.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_4.gif">=

<img src="/storage/problem-media/109569/problem_109569_img_5.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_6.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_7.gif">.

</i></center>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка