Олимпиадные задачи по теме «Последовательности» для 7 класса - сложность 2-4 с решениями

Можно ли в записи  2013² – 2012² – ... – 2² – 1²  некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?

Вокруг стола пустили пакет с семечками. Первый взял 1 семечку, второй – 2, третий – 3 и так далее: каждый следующий брал на одну семечку больше. Известно, что на втором круге было взято в сумме на 100 семечек больше, чем на первом. Сколько человек сидело за столом?

Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?

Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?<div align="center"><img src="/storage/problem-media/115472/problem_115472_img_2.gif"></div>

В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (<i>k</i>-й сдвиг происходит на2<i><sup>k-</sup></i>1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?

Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?

В классе 33 человека. У каждого ученика спросили, сколько у него в классе тезок и сколько однофамильцев (включая родственников). Оказалось, что среди названных чисел встретились все целые от 0 до 10 включительно. Докажите, что в классе есть два ученика с одинаковыми именем и фамилией.

Докажите тождество <center><i> <img src="/storage/problem-media/109569/problem_109569_img_2.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_3.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_4.gif">=

<img src="/storage/problem-media/109569/problem_109569_img_5.gif">+ <img src="/storage/problem-media/109569/problem_109569_img_6.gif">+..+ <img src="/storage/problem-media/109569/problem_109569_img_7.gif">.

</i></center>

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?

Некоторые из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>200</sub>написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>100</sub>содержатся все натуральные числа от 1 до 100 включительно.

По окружности в одном направлении на равных расстояниях курсируют <i>n</i> поездов. На этой дороге в вершинах правильного треугольника расположены станции <i>A, B</i> и <i>C</i> (обозначенные по направлению движения). Ира входит на станцию <i>A</i> и одновременно Лёша входит на станцию <i>B</i>, чтобы уехать на ближайших поездах. Известно, что если они входят на станции в тот момент, когда машинист Рома проезжает лес, то Ира сядет в поезд раньше Лёши, а в остальных случаях Лёша – раньше Иры или одновременно с ней. Какая часть дороги проходит по лесу?

Банкир узнал, что среди одинаковых на вид монет одна — фальшивая (более легкая). Он попросил эксперта определить эту монету с помощью чашечных весов без гирь, причем потребовал, чтобы каждая монета участвовала во взвешиваниях не более двух раз. Какое наибольшее число монет может быть у банкира, чтобы эксперт заведомо смог выделить фальшивую за<i>n</i>взвешиваний?

Прямоугольник размером 1×<i>k</i>при всяком натуральном<i>k</i>будем называть полоской. При каких натуральных<i>n</i>прямоугольник размером1995×<i>n</i>можно разрезать на попарно различные полоски?

Петя вынимает из мешка чёрные и красные карточки и складывает их в две стопки. Класть карточку на другую карточку того же цвета запрещено. Десятая и одиннадцатая карточки, выложенные Петей, — красные, а двадцать пятая — чёрная. Какого цвета двадцать шестая выложенная карточка?

Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.

{<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a</i><sub>20</sub>} — набор целых положительных чисел. Строим новый набор чисел {<i>b</i><sub>0</sub>,<i>b</i><sub>1</sub>,<i>b</i><sub>2</sub>, ...} по следующему правилу: <i>b</i><sub>0</sub>— количество чисел исходного набора, которые больше 0, <i>b</i><sub>1</sub>— количество чисел исходного набора, которые больше 1, <i>b</i><sub>2</sub>— количество чисел исходного набора, которые больше 2, и т.д., пока не пойдут нули. Докажите, что сумма всех чисел исходного набора равна сумме всех чисел нового набора.

Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?

а) Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?

б) При спуске с той же лестницы Леша перепрыгивает через некоторые ступеньки (может даже через все 10). Сколькими способами он может спуститься по этой лестнице?

Найти сумму 1 + 2002 + 2002<sup>2</sup>+ ... + 2002<sup><i>n</i></sup>.

На какие простые числа, меньшие 17, делится число  2002<sup>2002</sup> − 1?

Найдите сумму   1·1! + 2·2! + 3·3! + … + <i>n</i>·<i>n</i>!.

В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.

Найдите последнее число.

а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится? б) Тот же вопрос для четырёхзначных чисел.

Последовательность {<i>x<sub>n</sub></i>} определяется условиями:   <i>x</i><sub><i>n</i>+2</sub> = <i>x<sub>n</sub></i> – <sup>1</sup>/<sub><i>x</i><sub><i>n</i>+1</sub></sub>   при  <i>n</i> ≥ 1.

Докажите, что среди членов последовательности найдётся ноль. Найдите номер этого члена.

Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка