Олимпиадные задачи по теме «Планиметрия» для 5-7 класса - сложность 1-2 с решениями
Планиметрия
НазадМожно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?
Биссектрисы треугольника <i>ABC</i> пересекаются в точке <i>I</i>, ∠<i>ABC</i> = 120°. На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> отмечены соответственно точки <i>P</i> и <i>Q</i> так, что <i>AP = CQ = AC</i>. Докажите, что угол <i>PIQ</i> – прямой.
Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол. <div align="center"><img src="/storage/problem-media/117002/problem_117002_img_2.gif"></div>
В треугольнике <i>ABC</i> на стороне <i>AB</i> выбрана точка <i>K</i> и проведены биссектриса <i>KE</i> треугольника <i>AKC</i> и высота <i>KH</i> треугольника <i>BKC</i>. Оказалось, что угол <i>EKH</i> – прямой. Найдите <i>BC</i>, если <i>HC</i> = 5.
Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов. <div align="center"><img src="/storage/problem-media/116965/problem_116965_img_2.gif"></div>
В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
а) за 5 или менее;
б) за 4 или менее;
в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>
Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.
Чему равна сторона квадрата, если площадь прямоугольника 54 м²?
На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?
Внутри угла <i>AOB</i>, равного 120°, проведены лучи <i>OC</i> и <i>OD</i> так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла <i>AOC</i>, указав все возможные варианты.
На стороне <i>ВС</i> равностороннего треугольника <i>АВС</i> отмечены точки <i>K</i> и <i>L</i> так, что <i>BK = KL = LC</i>, а на стороне <i>АС</i> отмечена точка <i>М</i> так,
что <i>АМ</i> = ⅓ <i>AC</i>. Найдите сумму углов <i>AKM</i> и <i>ALM</i>.
В прямоугольнике <i>АВСD</i> точка <i>Р</i> – середина стороны <i>АВ</i>, а точка <i>Q</i> – основание перпендикуляра, опушенного из вершины <i>С</i> на <i>PD</i>.
Докажите, что <i>BQ = BC</i>.
У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?
На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?
<img align="right" src="/storage/problem-media/116673/problem_116673_img_2.gif">Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)
Через точку <i>Y</i> на стороне <i>AB</i> равностороннего треугольника <i>ABC</i> проведена прямая, пересекающая сторону <i>BC</i> в точке <i>Z</i>, а продолжение стороны <i>CA</i> за точку <i>A</i> – в точке <i>X</i>. Известно, что <i>XY = YZ</i> и <i>AY = BZ</i>. Докажите, что прямые <i>XZ</i> и <i>BC</i> перпендикулярны.
В треугольнике <i>ABC</i> биссектриса угла <i>C</i> пересекает сторону <i>AB</i> в точке <i>M</i>, а биссектриса угла <i>A</i> пересекает отрезок <i>CM</i> в точке <i>T</i>. Оказалось, что отрезки <i>CM</i> и <i>AT</i> разбили треугольник <i>ABC</i> на три равнобедренных треугольника. Найдите углы треугольника <i>ABC</i>.
В остроугольном треугольнике <i>ABC</i> на сторонах <i>AC</i> и <i>AB</i> отметили точки <i>K</i> и <i>L</i> соответственно, причём прямая <i>KL</i> параллельна <i>BC</i> и <i>KL = KC</i>. На стороне <i>BC</i> выбрана точка <i>M</i> так, что ∠<i>KMB</i> = ∠<i>BAC</i>. Докажите, что <i>KM = AL</i>. <small>Также доступны документы в формате TeX</small>
В окружности с центром <i>O</i> проведена хорда <i>AB</i> и радиус <i>OK</i>, пересекающий её под прямым углом в точке <i>M</i>. На большей дуге <i>AB</i> окружности выбрана точка <i>P</i>, отличная от середины этой дуги. Прямая <i>PM</i> вторично пересекает окружность в точке <i>Q</i>, а прямая <i>PK</i> пересекает <i>AB</i> в точке <i>R</i>. Докажите, что <i>KR > MQ</i>.
На сторонах <i>AC</i> и <i>BC</i> треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>N</i> соответственно так, что <i>MN || AB</i>. На стороне <i>AC</i> отмечена точка <i>K</i> так, что <i>CK = AM</i>. Отрезки <i>AN</i> и <i>BK</i> пересекаются в точке <i>F</i>. Докажите, что площади треугольника <i>ABF</i> и четырёхугольника <i>KFNC</i> равны.
<i>AL</i> – биссектриса треугольника <i>ABC, K</i> – такая точка на стороне <i>AC</i>, что <i>CK = CL</i>. Прямая <i>KL</i> и биссектриса угла <i>B</i> пересекаются в точке <i>P</i>.
Докажите, что <i>AP = PL</i>.
В трапеции <i>ABCD</i> основание <i>AD</i> в четыре раза больше чем <i>BC</i>. Прямая, проходящая через середину диагонали <i>BD</i> и параллельная <i>AB</i>, пересекает сторону <i>CD</i> в точке <i>K</i>. Найдите отношение <i>DK</i> : <i>KC</i>.
Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. На продолжении стороны <i>AB</i> за точку <i>B</i> отмечена такая точка <i>M</i>, что <i>MC = MD</i>.
Докажите, что ∠<i>AMO</i> = ∠<i>MAD</i>.
На стороне <i>AB</i> треугольника <i>ABC</i> отмечена точка <i>K</i>. Отрезок <i>CK</i> пересекает медиану <i>AM</i> треугольника в точке <i>P</i>. Оказалось, что <i>AK = AP</i>.
Найдите отношение <i>BK</i> : <i>PM</i>.
Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части. <div align="center"><img src="/storage/problem-media/116469/problem_116469_img_2.gif"></div>
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?