Олимпиадные задачи по теме «Классическая комбинаторика» для 11 класса - сложность 3 с решениями
Классическая комбинаторика
НазадВ футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?
На собрание пришло <i>n</i> человек (<i>n</i> > 1). Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
б) Покажите, что <i>n</i> может быть больше 4.
Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру <i>А</i> передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.
<img align="right" src="/storage/problem-media/115364/problem_115364_img_2.gif"> Назовём лестницей высоты <i>n</i> фигуру, состоящую из всех клеток квадрата <i>n</i>×<i>n</i>, лежащих не выше диагонали (на рисунке показана лестница высоты 4). Сколькими различными способами можно разбить лестницу высоты <i>n</i> на несколько прямоугольников, стороны которых идут по линиям сетки, а площади попарно различны?
Докажите, что при любых натуральных 0 <<i>k</i><<i>m < n</i> числа <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_3.gif"> не взаимно просты.
Дано 101-элементное подмножество <i>A</i> множества <i>S</i> = {1, 2, ..., 1000000}.
Докажите, что для некоторых <i>t</i><sub>1</sub>, ..., <i>t</i><sub>100</sub> из <i>S</i> множества <i>A<sub>j</sub></i> = {<i>x + t<sub>j</sub></i> | <i>x</i> ∈ <i>A; j</i> = 1, ..., 100} попарно не пересекаются.
Каких точных квадратов, не превосходящих 10<sup>20</sup>, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?
В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)
Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.
В правильном (6<i>n</i>+1)-угольнике <i>K</i> вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.
В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число <i>k</i>, то первые <i>k</i> чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.
Даны таблица 100×100 клеток и <i>N</i> фишек. Рассматриваются все такие расстановки фишек в клетки таблицы, что никакие две фишки не стоят в соседних клетках. При каком наибольшем <i>N</i> в каждой из этих расстановок можно найти хотя бы одну фишку, от перемещения которой в соседнюю клетку заданное условие не нарушится? (Соседними считаются клетки, имеющие общую сторону.)
Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?
В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?
Сто номерков выложили в ряд в порядке возрастания: 00, 01, 02, 03, ..., 99. Затем номерки переставили так, что каждый следующий номерок стал получаться из предыдущего увеличением или уменьшением ровно одной из цифр на 1 (например, после 29 может идти 19, 39 или 28, а 30 или 20 – не может). Какое наибольшее число номерков могло остаться на своих местах?
Сколькими способами можно расставить числа от 1 до 100 в прямоугольнике 2×50 так, чтобы каждые два числа, различающиеся на 1, всегда попадали бы в клетки с общей стороной?
Даны две таблицы <i>A</i> и <i>B</i>, в каждой <i>m</i> строк и <i>n</i> столбцов. В каждой клетке каждой таблицы записано одно из чисел 0 или 1, причём в строках таблиц числа не убывают (при движении по строке слева направо), и в столбцах таблиц числа не убывают (при движении по столбцу сверху вниз). Известно, что при любом <i>k</i> от 1 до <i>m</i> сумма чисел в верхних <i>k</i> строках таблицы <i>A</i> не меньше суммы чисел в верхних <i>k</i> строках таблицы <i>B</i>. Известно также, что всего в таблице <i>A</i> столько же единиц, сколько в таблице <i>B</i>. Докажите, что при любом <i>l</i> от 1 до <i>n</i> сумма чисел в...
Каждая сторона правильного треугольника разбита на 10 равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на 100 маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными прямыми, образуют полоску. Какое максимальное число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений?
Фигура Ф представляет собой пересечение <i>n</i> кругов (<i>n</i> ≥ 2, радиусы не обязательно одинаковы). Какое максимальное число криволинейных "сторон" может иметь фигура Ф? (Криволинейная сторона – это участок границы Ф, принадлежащий одной из окружностей и ограниченный точками пересечения с другими окружностями.)
В колоду сложено <i>n</i> различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все <i>n</i> карт в обратном порядке.
а) Докажите, что при <i>n</i> = 9 это можно сделать за 5 операций;
Докажите, что при <i>n</i> = 52 это
б) можно сделать за 27 операций;
в) нельзя сделать за 17 операций;
г) нельзя сделать за 26 операций.
Числа 1, 2, 3, ..., <i>n</i> записываются в некотором порядке: <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a<sub>n</sub></i>. Берётся сумма <i>S</i> = <sup><i>a</i><sub>1</sub></sup>/<sub>1</sub> + <sup><i>a</i><sub>2</sub></sup>/<sub>2</sub> + ... + <sup><i>a<sub>n</sub></i></sup>/<sub><i>n</i></sub>. Найдите такое <i>n</i>, чтобы среди таких сумм (при всевозможных перестановках <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>,...
На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.
Докажите для каждого натурального числа <i>n</i> > 1 равенство: [<i>n</i><sup>1/2</sup>] + [<i>n</i><sup>1/3</sup>] + ... + [<i>n</i><sup>1/<i>n</i></sup>] = [log<sub><sub>2</sub></sub><i>n</i>] + [log<sub><sub>3</sub></sub><i>n</i>] + ... + [log<i><sub>n</sub>n</i>].
<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>101</sub> – такая перестановка чисел 2, 3, ..., 102, что <i>a</i><sub><i>k</i></sub> делится на <i>k</i> при каждом <i>k</i>. Найти все такие перестановки.