Олимпиадные задачи по теме «Функции одной переменной. Непрерывность» для 11 класса - сложность 4 с решениями
Функции одной переменной. Непрерывность
НазадДокажите, что для всех<i> x<img src="/storage/problem-media/109754/problem_109754_img_2.gif"></i>(0<i>;<img src="/storage/problem-media/109754/problem_109754_img_3.gif"></i>)при<i> n>m </i>, где<i> n,m </i>– натуральные, справедливо неравенство <center>2<i>| sin<sup>n</sup> x- cos<sup>n</sup> x|<img src="/storage/problem-media/109754/problem_109754_img_4.gif"> </i>3<i>| sin<sup>m</sup> x- cos<sup>m</sup> x|; </i></center>
Решите уравнение<i> cos(cos(cos(cos x)))= sin(sin(sin(sin x))) </i>.
Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость, которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость, пересекающая все семь пирамид по треугольникам равной площади.
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
Число рёбер многогранника равно 100.
а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?
б) Докажите, что для невыпуклого многогранника это число может равняться 96,
в) но не может равняться 100.
Аладдин побывал во всех точках экватора, двигаясь то на восток, то на запад, а иногда мгновенно перемещаясь в диаметрально противоположную точку Земли. Докажите, что был отрезок времени, за которое разность расстояний, пройденных Аладдином на восток и на запад, не меньше половины длины экватора.
Для каждого непрямоугольного треугольника <i>T</i> обозначим через <i>T</i><sub>1</sub> треугольник, вершинами которого служат основания высот треугольника <i>T</i>; через <i>T</i><sub>2</sub> – треугольник, вершинами которого служат основания высот треугольника <i>T</i><sub>1</sub>; аналогично определим треугольники <i>T</i><sub>3</sub>, <i>T</i><sub>4</sub> и так далее. Каким должен быть треугольник <i>T</i>, чтобы
а) треугольник <i>T</i><sub>1</sub> был остроугольным?
б) в последовательности <i>T</i><sub>1</sub>, <i>T</i><sub>2</sub>, <i>T</i>...
Проекции двух точек на стороны четырёхугольника лежат на двух различных концентрических окружностях (проекции каждой точки образуют вписанный четырёхугольник, а радиусы соответствующих окружностей различны). Докажите, что четырёхугольник – параллелограмм.
Докажите, что если α < 0 < β, то <i>S</i><sub>α</sub>(<b><i>x</i></b>) ≤ <i>S</i><sub>0</sub>(<b><i>x</i></b>) ≤ <i>S</i><sub>β</sub>(<b><i>x</i></b>), причём <img align="absMIDDLE" src="/storage/problem-media/61414/problem_61414_img_2.gif">
Определение средних степенных <i>S</i><sub>α</sub>(<b><i>x</i></b>) можно посмотреть в <a href="https://problems.ru/thes.php?letter=17#srednee_stepennoe">справочнике</a>.
Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.
Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.