Олимпиадные задачи по теме «Принцип крайнего» для 11 класса - сложность 4-5 с решениями

На плоскости отметили 4<i>n</i> точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых  <i>n</i> + 1  точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7<i>n</i> отрезков.

На плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

В стране есть <i>N</i> городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого <i>k</i>  (2 ≤ <i>k ≤ N</i>)  при любом выборе <i>k</i> городов количество авиалиний между этими городами не будет превосходить  2<i>k</i> – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

Дана треугольная пирамида. Леша хочет выбрать два ее скрещивающихся ребра и на них, как на диаметрах, построить шары. Всегда ли он может выбрать такую пару, что любая точка пирамиды лежит хотя бы в одном из этих шаров?

Пусть<i> h </i> — наименьшая высота тетраэдра,<i> d </i> — наименьшее расстояние между его противоположными ребрами. При каких<i> t </i>возможно неравенство<i> d>th </i>?

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.

  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?

  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?

  в) Могут ли длины отрезков равняться 4, 4 и 3?

Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_2.gif"> </i>, б) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_3.gif"> </i>, в) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_4.gif"> </i>?

На плоскости даны точки<i> A<sub>1</sub> </i>,<i> A<sub>2</sub> </i>,<i> A<sub>n</sub> </i>и точки<i> B<sub>1</sub> </i>,<i> B<sub>2</sub> </i>,<i> B<sub>n</sub> </i>. Докажите, что точки<i> B<sub>i</sub> </i>можно перенумеровать так, что для всех<i> i<img src="/storage/problem-media/110807/problem_110807_img_2.gif"> j </i>угол между векторами<i> <img src="/storage/problem-media/110807/problem_110807_img_3.gif"> </i>и<i> <img src="/storage/problem-media/110807/problem_110807_img_4.gif"> </i>– острый или прямой.

Определите наименьшее действительное число <i>M</i>, при котором неравенство   |<i>ab</i>(<i>a</i>² – <i>b</i>²) + <i>bc</i>(<i>b</i>² – <i>c</i>²) + <i>ca</i>(<i>c</i>² – <i>a</i>²)| ≤ <i>M</i>(<i>a</i>² + <i>b</i>² + <i>c</i>²)²   выполняется для любых действительных чисел <i>a, b, c</i>.

Диагональ правильного 2006-угольника <i>P</i> называется <i>хорошей</i>, если её концы делят границу <i>P</i> на две части, каждая из которых содержит нечётное число сторон. Стороны <i>P</i> также называются хорошими. Пусть <i>P</i> разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри <i>P</i>. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников <i>кликой</i>, если все они дружат между собой. Их число называется <i>размером</i> клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

а) В 99 ящиках лежат яблоки и апельсины.

Докажите, что можно так выбрать 50 ящиков, что в них окажется не менее половины всех яблок и не менее половины всех апельсинов. б) В 100 ящиках лежат яблоки и апельсины.

Докажите, что можно так выбрать 34 ящика, что в них окажется не менее трети всех яблок и не менее трети всех апельсинов.

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

На плоскости отмечено<i> N<img src="/storage/problem-media/110154/problem_110154_img_2.gif"> </i>3различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более<i> n </i>различных расстояний. Докажите, что<i> N<img src="/storage/problem-media/110154/problem_110154_img_3.gif"> </i>(<i>n+</i>1)<i><sup>2</sup> </i>.

Докажите, что выпуклый многоугольник может быть разрезан непересекающимися диагоналями на остроугольные треугольники не более, чем одним способом.

Каждая клетка клетчатой плоскости раскрашена в один из<i>n</i>² цветов так, что в каждом квадрате из<i>n×</i>клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в<i>n</i>цветов.

Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем среди любых<i> k+</i>1квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить не более чем на2<i>k-</i>1непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку.

В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики.

В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими <i> k </i> авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на  <i>k</i> + 2  группы так, что никакие два города из одной группы не соединены авиалинией.

Докажите, что не существует конечного множества, содержащего более2<i>N </i>(<i> N></i>3) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.<ol type="1"> <li>Для любых <i> N </i> векторов этого множества найдется еще такой <i> N-</i>1 вектор из этого множества, что сумма всех 2<i>N-</i>1 векторов равна нулю;

</li><li>для любых <i> N </i> векторов этого множества найдутся еще такие <i> N </i> векторов из этого множества, что сумма всех 2<i>N </i> векторов равна нулю. </li></ol>

В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.

Даны многочлены <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>). Известно, что для некоторого многочлена <i>R</i>(<i>x, y</i>) выполняется равенство  <i>P</i>(<i>x</i>) – <i>P</i>(<i>y</i>) = <i>R</i>(<i>x, y</i>)(<i>Q</i>(<i>x</i>) – <i>Q</i>(<i>y</i>)).

Докажите, что существует такой многочлен <i>S</i>(<i>x</i>), что  <i>P</i>(<i>x</i>) = <i>S</i>(<i>Q</i>(<i>x</i>)).

В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка