Олимпиадные задачи из источника «параграф 5. Признаки делимости» для 10 класса
параграф 5. Признаки делимости
НазадСуществует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?
Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.
Докажите, что если необходимый и достаточный признак делимости, выражающийся через свойства цифр числа, не зависит от порядка цифр, то это признак делимости на 3 или на 9.
Найдите наименьшее основание системы счисления, в которой одновременно имеют место следующие признаки делимости:
1) число делится на 5 тогда и только тогда, когда сумма его цифр делится на 5;
2) число делится на 7 тогда и только тогда, когда число, составленное из двух его последних цифр, делится на 7.
а) Опишите все системы счисления, в которых число делится на 2 тогда и только тогда, когда сумма его цифр делится на 2.б) Решите задачу, заменив модуль 2 произвольным натуральным числом <i>m</i> > 1.
С помощью признака делимости Паскаля (см. задачу <a href="https://mirolimp.ru/tasks/160815">160815</a>) установите признаки делимости на числа 3, 9, 6, 8, 12, 15, 11, 7, 27, 37.
Пусть запись числа <i>N</i> в десятичной системе счисления имеет вид <span style="text-decoration: overline;"><i>a<sub>n</sub>a</i><sub><i>n</i>–1</sub>...<i>a</i><sub>1</sub><i>a</i><sub>0</sub></span> , <i>r<sub>i</sub></i> – остаток от деления числа 10<sup><i>i</i></sup> на <i>m</i> (<i>i</i> = 0, ..., <i>n</i>).
Докажите, что число <i>N</i> делится на <i>m</i> тогда и только тогда, когда число <i>M = a<sub>n</sub>r<sub>n</sub> + a</i><sub><i>n</i>–1</sub><i>r</i><sub>&...
Двое пишут а) 30-значное; б) 20-значное число, употребляя только цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй, третью – первый и т. д. Может ли второй добиться того, чтобы полученное число разделилось на 9, если первый стремится ему помешать?
Найдите все такие трёхзначные числа, которые в 12 раз больше суммы своих цифр.
При каких <i>x</i> и <i>y</i> число <span style="text-decoration: overline;"><i>xxyy</i></span> является квадратом натурального числа?
Аналогичные указанному в задаче <a href="https://mirolimp.ru/tasks/160808">160808</a> признаки делимости существуют и для всех чисел вида 10<i>n</i> ± 1 и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21?
Существует следующий способ проверить, делится ли данное число <i>N</i> на 19:
1) отбрасываем последнюю цифру у числа <i>N</i>;
2) прибавляем к полученному числу произведение отброшенной цифры на 2;
3) с полученным числом проделываем операции 1) и 2) до тех пор, пока не останется число, меньшее или равное 19.
4) если остается 19, то 19 делится на <i>N</i>, в противном случае <i>N</i> не делится на 19.
Докажите справедливость этого признака делимости.
Докажите, что в записи числа 2<sup>30</sup> есть по крайней мере две одинаковые цифры, не вычисляя его.
Докажите, что если <i>n</i> > 6 – чётное совершенное число, то его цифровой корень (см. задачу <a href="https://mirolimp.ru/tasks/160794">160794</a>) равен 1.
Какие цифровые корни (см. задачу <a href="https://mirolimp.ru/tasks/160794">160794</a>) бывают у полных квадратов и полных кубов?
Найдите наименьшее число, запись которого состоит лишь из нулей и единиц, делящееся на 225.
Последовательность {<i>x<sub>n</sub></i>} устроена следующим образом: <i>x</i><sub>1</sub> = 3<sup>2001</sup>, а каждый следующий член равен сумме цифр предыдущего. Найдите <i>x</i><sub>5</sub>.
Докажите, что число 192021...7980 делится на 1980.
Найдите все числа вида <span style="text-decoration: overline;">13<i>xy</i>45<i>z</i></span>, которые делятяс на 792.
Найдите все числа вида <span style="text-decoration: overline;"><i>xy</i>9<i>z</i></span>, которые делятся на 132.