Олимпиадные задачи из источника «глава 21. Принцип Дирихле» - сложность 2 с решениями

На плоскости отмечена точка <i>O</i>. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку <i>O</i>, чтобы каждый луч с началом в точке <i>O</i> пересекал не менее двух кругов?

Доказать, что в произвольном выпуклом 2<i>n</i>-угольнике найдётся диагональ, не параллельная ни одной из его сторон.

   а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника, площадь общей части которых не меньше 1.    б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника, площадь общей части которых не меньше<sup>1</sup>/<sub>9</sub>.

Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.

Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.

Узлы бесконечной клетчатой бумаги раскрашены в два цвета. Докажите, что существуют две горизонтальные и две вертикальные прямые, на пересечении которых лежат точки одного цвета.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка