Олимпиадные задачи из источника «глава 21. Принцип Дирихле» - сложность 5 с решениями

На отрезке длиной 1 расположены попарно не пересекающиеся отрезки, сумма длин которых равна<i>p</i>. Обозначим эту систему отрезков<i>A</i>. Пусть<i>B</i> — дополнительная система отрезков (отрезки систем<i>A</i>и<i>B</i>не имеют общих внутренних точек и полностью покрывают данный отрезок). Докажите, что существует параллельный перенос<i>T</i>, для которого пересечение<i>B</i>и<i>T</i>(<i>A</i>) состоит из отрезков, сумма длин которых не меньше<i>p</i>(1 -<i>p</i>)/2.

В круге радиуса 16 расположено 650 точек. Докажите, что найдется кольцо с внутренним радиусом 2 и внешним радиусом 3, в котором лежит не менее 10 из данных точек.

Попарные расстояния между точками<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>больше 2. Докажите, что любую фигуру, площадь которой меньше$\pi$, можно сдвинуть на вектор длиной не более 1 так, что она не будет содержать точек<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>.

Даны две одинаковые окружности. На каждой из них отмечено по <i>k</i>дуг, угловые величины каждой из которых меньше${\frac{1}{k^2-k+1}}$<sup> . </sup>180<sup><tt>o</tt></sup>, причем окружности можно совместить так, чтобы отмеченные дуги одной окружности совпали с отмеченными дугами другой. Докажите, что эти окружности можно совместить так, чтобы все отмеченные дуги оказались на неотмеченных местах.

Даны две окружности, длина каждой из которых равна 100 см. На одной из них отмечено 100 точек, а на другой — несколько дуг, сумма длин которых меньше 1 см. Докажите, что эти окружности можно совместить так, чтобы ни одна отмеченная точка не попала на отмеченную дугу.

Узлы бесконечной клетчатой бумаги раскрашены в три цвета. Докажите, что существует равнобедренный прямоугольный треугольник с вершинами одного цвета.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка