Олимпиадные задачи из источника «глава 21. Принцип Дирихле» - сложность 3-5 с решениями
глава 21. Принцип Дирихле
НазадДва неравных картонных диска разделены на 1965 равных секторов. На каждом из дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший диск наложен на больший, так что их центры совпадают, а секторы целиком лежат один против другого. Меньший диск поворачивают на всевозможные углы, кратные${\frac{1}{1965}}$части окружности, оставляя больший диск неподвижным. Доказать, что по крайней мере при 60 положениях на дисках совпадут не более 20 красных секторов.
В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся
а) две фигуры, площадь общей части которых не меньше <sup>3</sup>/<sub>20</sub>;
б) две фигуры, площадь общей части которых не меньше ⅕;
в) три фигуры, площадь общей части которых не меньше <sup>1</sup>/<sub>20</sub>.
На отрезке длиной 1 расположены попарно не пересекающиеся отрезки, сумма длин которых равна<i>p</i>. Обозначим эту систему отрезков<i>A</i>. Пусть<i>B</i> — дополнительная система отрезков (отрезки систем<i>A</i>и<i>B</i>не имеют общих внутренних точек и полностью покрывают данный отрезок). Докажите, что существует параллельный перенос<i>T</i>, для которого пересечение<i>B</i>и<i>T</i>(<i>A</i>) состоит из отрезков, сумма длин которых не меньше<i>p</i>(1 -<i>p</i>)/2.
На плоскости дано <i>n</i> фигур. Пусть <i>S</i><sub><i>i</i><sub>1</sub>...<i>i<sub>k</sub></i></sub> – площадь пересечения фигур с номерами <i>i</i><sub>1</sub>, ..., <i>i<sub>k</sub></i>, a <i>S</i> – площадь части плоскости, покрытой данными фигурами; <i>M<sub>k</sub></i> – сумма всех чисел <i>S</i><sub><i>i</i><sub>1</sub>...<i>i<sub>k</sub></i></sub>. Докажите, что:
а) <i>S</i> = <i>M</i><sub>1</sub> – <i>M</i><sub>2</sub> + <i>M</i><sub>3</sub> – ... + (–1)&l...
В круге радиуса 16 расположено 650 точек. Докажите, что найдется кольцо с внутренним радиусом 2 и внешним радиусом 3, в котором лежит не менее 10 из данных точек.
Попарные расстояния между точками<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>больше 2. Докажите, что любую фигуру, площадь которой меньше$\pi$, можно сдвинуть на вектор длиной не более 1 так, что она не будет содержать точек<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>.
Назовем крестом фигуру, образованную диагоналями квадрата со стороной 1 (рис.). Докажите, что в круге радиуса 100 можно разместить лишь конечное число непересекающихся крестов. <div align="center"><img src="/storage/problem-media/58103/problem_58103_img_2.gif" border="1"></div>
Дана бесконечная клетчатая бумага и фигура, площадь которой меньше площади клетки. Докажите, что эту фигуру можно положить на бумагу, не накрыв ни одной вершины клетки.
В квадрате со стороной 15 расположено 20 попарно непересекающихся квадратиков со стороной 1. Докажите, что в большом квадрате можно разместить круг радиуса 1 так, чтобы он не пересекался ни с одним из квадратиков.
Даны две одинаковые окружности. На каждой из них отмечено по <i>k</i>дуг, угловые величины каждой из которых меньше${\frac{1}{k^2-k+1}}$<sup> . </sup>180<sup><tt>o</tt></sup>, причем окружности можно совместить так, чтобы отмеченные дуги одной окружности совпали с отмеченными дугами другой. Докажите, что эти окружности можно совместить так, чтобы все отмеченные дуги оказались на неотмеченных местах.
Даны две окружности, длина каждой из которых равна 100 см. На одной из них отмечено 100 точек, а на другой — несколько дуг, сумма длин которых меньше 1 см. Докажите, что эти окружности можно совместить так, чтобы ни одна отмеченная точка не попала на отмеченную дугу.
На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5.
Внутри окружности радиуса <i>n</i>расположено 4<i>n</i>отрезков длиной 1. Докажите, что можно провести прямую, параллельную или перпендикулярную данной прямой <i>l</i>и пересекающую по крайней мере два данных отрезка.
В окружности радиуса 1 проведено несколько хорд. Докажите, что если каждый диаметр пересекает не более <i>k</i>хорд, то сумма длин хорд меньше$\pi$<i>k</i>.
Узлы бесконечной клетчатой бумаги раскрашены в три цвета. Докажите, что существует равнобедренный прямоугольный треугольник с вершинами одного цвета.
Внутри выпуклого 2<i>n</i>-угольника взята точка <i>P</i>. Через каждую вершину и точку <i>P</i>проведена прямая. Докажите, что найдется сторона 2<i>n</i>-угольника, с которой ни одна из проведенных прямых не имеет общих внутренних точек.
Какое наименьшее число точек достаточно отметить внутри выпуклого<i>n</i>-угольника, чтобы внутри любого треугольника с вершинами в вершинах<i>n</i>-угольника содержалась хотя бы одна отмеченная точка?
В парке растет 10000 деревьев, посаженных квадратно-гнездовым способом (100 рядов по 100 деревьев). Какое наибольшее число деревьев можно срубить, чтобы выполнялось следующее условие: если встать на любой пень, то не будет видно ни одного другого пня? (Деревья можно считать достаточно тонкими.)
Каждая из девяти прямых разбивает квадрат на два четырехугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
В квадрате со стороной 1 находится 51 точка. Докажите, что какие-то три из них можно накрыть кругом радиуса 1/7.
На плоскости дано 25 точек, причем среди любых трех из них найдутся две на расстоянии меньше 1. Докажите, что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки?
В прямоугольнике 3×4 расположено 6 точек. Докажите, что среди них найдутся две точки, расстояние между которыми не превосходит $\sqrt{5}$.