Олимпиадные задачи из источника «параграф 1. Проективные преобразования прямой» для 4-9 класса - сложность 4 с решениями

Точки <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>лежат на одной прямой. Докажите, что если (<i>ABCD</i>) = 1, то либо<i>A</i>=<i>B</i>, либо<i>C</i>=<i>D</i>.

Докажите, что преобразование <i>P</i>числовой прямой является проективным тогда и только тогда, когда оно представляется в виде<div align="CENTER"> <i>P</i>(<i>x</i>) = $\displaystyle {\frac{ax+b}{cx+d}}$, </div>где <i>a</i>,<i>b</i>,<i>c</i>,<i>d</i> — такие числа, что<i>ad</i>-<i>bc</i>$\ne$0. (Такие отображения называют<i>дробно-линейными</i>.)

Дано отображение прямой <i>a</i>на прямую <i>b</i>, сохраняющее двойное отношение любой четверки точек. Докажите, что это отображение проективно.

Докажите, что нетождественное проективное преобразование прямой имеет не более двух неподвижных точек.

Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.

Докажите, что если(<i>ABCX</i>) = (<i>ABCY</i>), то<i>X</i>=<i>Y</i>(все точки попарно различны, кроме, быть может, точек <i>X</i>и <i>Y</i>, и лежат на одной прямой).

а) Даны прямые <i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>, проходящие через одну точку, и прямая <i>l</i>, через эту точку не проходящая. Пусть <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i> — точки пересечения прямой <i>l</i>с прямыми <i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>соответственно. Докажите, что(<i>abcd</i>)= (<i>ABCD</i>). б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

Докажите, что существует проективное отображение, которое три данные точки одной прямой переводит в три данные точки другой прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка