Олимпиадные задачи из источника «глава 5. Треугольники» для 10-11 класса - сложность 2-3 с решениями

Окружность <i>S</i> касается окружностей <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> в точках <i>A</i><sub>1</sub> и <i>A</i><sub>2</sub>.

Докажите, что прямая <i>A</i><sub>1</sub><i>A</i><sub>2</sub> проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub>.

Окружность <i>S</i><sub>1</sub> вписана в угол <i>A</i> треугольника <i>ABC</i>. Из вершины <i>C</i> к ней проведена касательная (отличная от <i>CA</i>), и в образовавшийся треугольник с вершиной <i>B</i> вписана окружность <i>S</i><sub>2</sub>. Из вершины <i>A</i> к <i>S</i><sub>2</sub> проведена касательная, и в образовавшийся треугольник с вершиной <i>C</i> вписана окружность <i>S</i><sub>3</sub>

и т. д. Докажите, что окружность <i>S</i><sub>7</sub> совпадает с <i>S</i><sub>1</sub>.

Окружность <i>S</i><sub>1</sub> вписана в угол <i>A</i> треугольника <i>ABC</i>; окружность <i>S</i><sub>2</sub> вписана в угол <i>B</i> и касается <i>S</i><sub>1</sub> (внешним образом); окружность <i>S</i><sub>3</sub> вписана в угол <i>C</i> и касается <i>S</i><sub>2</sub>; окружность <i>S</i><sub>4</sub> вписана в угол <i>A</i> и касается <i>S</i><sub>3</sub> и т. д. Докажите, что окружность <i>S</i><sub>7</sub> совпадает с <i>S</i><sub>1</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка