Олимпиадные задачи из источника «9 класс, 2 тур» - сложность 1-2 с решениями

200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

Решить систему уравнений:   <i>x</i><sub>1</sub><i>x</i><sub>2</sub> = <i>x</i><sub>2</sub><i>x</i><sub>3</sub> = ... = <i>x</i><sub><i>n</i>–1</sub><i>x<sub>n</sub> = x<sub>n</sub>x</i><sub>1</sub> = 1.

Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.

Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка