Олимпиадные задачи из источника «1956 год» для 2-9 класса - сложность 1-2 с решениями
Все точки данного отрезка<i>AB</i>проектируются на всевозможные прямые, проходящие через данную точку<i>O</i>. Найти геометрическое место этих проекций.
Груз весом 13,5 т упакован в ящики так, что вес каждого ящика не превосходит 350 кг. Докажите, что этот груз можно перевезти на 11 полуторатонках. (Весом пустого ящика можно пренебречь.)
64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы: по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на одной из диагоналей, равна 112. Числа, расположенные симметрично относительно этой диагонали, равны. Докажите, что сумма чисел в каждом столбце меньше 1035.
Точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, <i>A</i><sub>4</sub>, <i>A</i><sub>5</sub>, <i>A</i><sub>6</sub> делят окружность радиуса 1 на шесть равных частей. Из <i>A</i><sub>1</sub> провёден луч <i>l</i><sub>1</sub> в направлении <i>A</i><sub>2</sub>, из <i>A</i><sub>2</sub> – луч <i>l</i><sub>2</sub> в направлении <i>A</i><sub>3</sub>, ..., из <i>A</i><sub>6</sub> – луч <i>l</i><sub>6</sub> в направлении <i>A</i><s...
Точка<i>O</i>— центр круга, описанного около треугольника<i>ABC</i>. Точки<i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и<i>C</i><sub>1</sub>симметричны точке<i>O</i>относительно сторон треугольника<i>ABC</i>. Докажите, что все высоты треугольника<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>проходят через точку<i>O</i>, а все высоты треугольника<i>ABC</i>проходят через центр круга, описанного около треугольника<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>.
На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).
Пусть <i>a, b, c, d, l</i> – целые числа. Докажите, что если дробь <img width="34" height="35" align="MIDDLE" border="0" src="/storage/problem-media/78068/problem_78068_img_2.gif"> сократима на число <i>k</i>, то <i>ad – bc</i> делится на <i>k</i>.
На окружности длины 15 выбрано<i>n</i>точек, так что для каждой имеется ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояние измеряется по окружности). Докажите, что<i>n</i>делится на 10.
Какое наименьшее число точек можно выбрать на окружности длины 1956 так, чтобы для каждой из этих точек нашлась ровно одна выбранная точка на расстоянии 1 и ровно одна на расстоянии 2 (расстояния измеряются по окружности)?
Найти все числа, на которые может быть сократима при целом значении <i>l</i> дробь <img width="35" height="35" align="MIDDLE" border="0" src="/storage/problem-media/78063/problem_78063_img_2.gif">.
Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает каждое свое звено ровно один раз. Докажите, что число звеньев чётно.
Найти все двузначные числа, сумма цифр которых не меняется при умножении числа на 2, 3, 4, 5, 6, 7, 8 и 9.
Докажите, что не существует на плоскости четырех точек<i>A</i>,<i>B</i>,<i>C</i>и<i>D</i>таких, что все треугольники<i>ABC</i>,<i>BCD</i>,<i>CDA</i>,<i>DAB</i>остроугольные.