Олимпиадные задачи из источника «8 класс, 1 тур» - сложность 1-5 с решениями

Доказать, что существует бесконечно много натуральных чисел, не представимых в виде  <i>p + n</i><sup>2<i>k</i></sup>  ни при каких простых <i>p</i> и целых <i>n</i> и <i>k</i>.

Даны отрезки<i>AB</i>,<i>CD</i>и точка<i>O</i>. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку<i>O</i>, не пересекает другой отрезок. Сколько может быть отмеченных концов?

Через данную вершину<i>A</i>выпуклого четырёхугольника<i>ABCD</i>провести прямую, делящую его площадь пополам.

В турнире каждый шахматист половину всех очков набрал во встречах с участниками, занявшими три последних места.

Сколько всего человек принимало участие в турнире?

Доказать, что число, состоящее из 300 единиц и некоторого количества нулей, не является точным квадратом.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка