Олимпиадные задачи из источника «1963 год» - сложность 3 с решениями

Найти все многочлены <i>P</i>(<i>x</i>), для которых справедливо тождество:  <i>xP</i>(<i>x</i> – 1) ≡ (<i>x</i> – 26)<i>P</i>(<i>x</i>).

Последовательность чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>,...,<i>a</i><sub>n</sub>... образуется следующим образом:<div align="CENTER"> <i>a</i><sub>1</sub> = <i>a</i><sub>2</sub> = 1; <i>a</i><sub>n</sub> = $\displaystyle {\frac{a_{n-1}^2+2}{a_{n-2}}}$        (<i>n</i>$\displaystyle \ge$3). </div>Доказать, что все числа в последовательности — целые.

Из центра правильного 25-угольника проведены векторы во все его вершины.

Как надо выбрать несколько векторов из этих 25, чтобы их сумма имела наибольшую длину?

На листе бумаги нанесена сетка из<i>n</i>горизонтальных и<i>n</i>вертикальных прямых. Сколько различных замкнутых 2<i>n</i>-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?

В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?

Какое наибольшее число точек самопересечения может иметь замкнутая 14-звенная ломаная, проходящая по линиям клетчатой бумаги так, что ни на какой линии не лежит более одного звена ломаной?

По аллее длиной 100 метров идут три человека со скоростями 1, 2 и 3 км/ч. Дойдя до конца аллеи, каждый из них поворачивает и идёт назад с той же скоростью. Доказать, что найдётся отрезок времени в 1 минуту, когда все трое будут идти в одном направлении.

Какое наибольшее количество чисел можно выбрать из набора1, 2,..., 1963, чтобы сумма никаких двух чисел не делилась на их разность?

Найти множество центров тяжести всех остроугольных треугольников, вписанных в данную окружность.

<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a<sub>n</sub></i>— произвольные натуральные числа. Обозначим через<i>b<sub>k</sub></i>количество чисел из набора<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a<sub>n</sub></i>, удовлетворяющих условию:  <i>a<sub>i</sub></i>≥<i>k</i>. Доказать, что  <i>a</i><sub>1</sub>+<i>a</i><sub>2</sub>+ ... +<i>a<sub>n</sub></i>=<i>b</i><sub>1</sub>+<i>b</i><sub>2</sub>+ ...

Дан произвольный треугольник<i>ABC</i>и такая прямая<i>l</i>, пересекающая треугольник, что расстояние от неё до точки<i>A</i>равно сумме расстояний до этой прямой от точек<i>B</i>и<i>C</i>(причем<i>B</i>и<i>C</i>лежат по одну сторону от<i>l</i>). Доказать, что все такие прямые проходят через одну точку.

Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую полученную точку деления проведены две плоскости, параллельные соответственно двум граням тетраэдра, не проходящим через эту точку. На сколько частей построенные плоскости разбивают тетраэдр?

Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.

Доказать, что сумма всех таких чисел делится на 9.

Положительные числа<i>x</i>,<i>y</i>,<i>z</i>обладают тем свойством, что<div align="CENTER"> <i>arctg</i> <i>x</i> + <i>arctg</i> <i>y</i> + <i>arctg</i> <i>z</i> < $\displaystyle \pi$. </div>Доказать, что сумма этих чисел больше их произведения.

Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером<i>m</i>×<i>n</i>клеток?

Можно ли в прямоугольник с отношением сторон 9 : 16 вписать прямоугольник с отношением сторон 4 : 7 (так, чтобы на каждой стороне первого прямоугольника лежала вершина второго)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка