Олимпиадные задачи из источника «1965 год» для 2-8 класса - сложность 3 с решениями

В каждой клетке квадратной таблицы <i>m×m</i> клеток стоит либо натуральное число, либо нуль. При этом, если на пересечении строки и столбца стоит нуль, то сумма чисел в "кресте", состоящем из этой строки и этого столбца, не меньше <i>m</i>. Докажите, что сумма всех чисел в таблице не меньше чем  ½ <i>m</i>².

Дан биллиард прямоугольной формы. В его углах имеются лузы, попадая в которые шарик останавливается. Шарик выпускают из одного угла бильярда под углом45<sup><tt>o</tt></sup>к стороне. В какой-то момент он попал в середину некоторой стороны. Доказать, что в середине противоположной стороны он побывать не мог.

Имеется 11 мешков монет. В 10 из них монеты настоящие, а в одном – все монеты фальшивые. Все настоящие монеты одного веса, все фальшивые монеты – также одного, но другого веса. Имеются весы, с помощью которых можно определить, какой из двух грузов тяжелее и на сколько. Двумя взвешиваниями определить, в каком мешке фальшивые монеты.

Дан прямоугольный биллиард размером 26×1965 (сторона длины 1965 направлена слева направо, а сторона длины 26 – сверху вниз; лузы расположены в вершинах прямоугольника). Из нижней левой лузы под углом 45° к бортам выпускается шар. Доказать, что после нескольких отражений от бортов он упадет в верхнюю левую лузу. (Угол падения равен углу отражения.)

Дана последовательность...,<i>a</i><sub>-n</sub>,...,<i>a</i><sub>-1</sub>,<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>,...,<i>a</i><sub>n</sub>,... бесконечная в обе стороны, причём каждый её член равен${\frac{1}{4}}$суммы двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть бесконечное число пар равных между собой чисел. (Пояснение: два члена, про которые известно, что они равны, не обязательно соседние).

Даны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек?

Вдоль коридора положено несколько кусков ковровой дорожки. Куски покрывают весь коридор из конца в конец без пропусков и даже налегают друг на друга, так что над некоторыми местами пола они лежат в несколько слоев. Доказать, что можно убрать несколько кусков, возможно, достав их из-под других и оставив остальные в точности на тех же местах, где они лежали прежде, так что коридор по-прежнему будет полностью покрыт, и общая длина оставленных кусков будет меньше удвоенной длины коридора.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка