Олимпиадные задачи из источника «1970 год» - сложность 2 с решениями
Можно ли разбить числа 1, 2, 3, ..., 33 на 11 групп, по три числа в каждой, так, чтобы в каждой группе одно из чисел равнялось сумме двух других?
Внутри круга радиуса 1 м расположены<i>n</i>точек. Доказать, что в круге или на его границе существует точка, сумма расстояний от которой до всех точек не меньше<i>n</i>метров.
На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных точек была больше 100.
У числа 2<sup>1970</sup> зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.
Масса каждой из 19 гирь не больше 70 г и равна целому числу граммов. Доказать, что из этих гирь нельзя составить более 1230 различных по массе наборов.
12 теннисистов участвовали в турнире. Известно, что каждые два теннисиста сыграли между собой ровно один раз и не было ни одного теннисиста, проигравшего все встречи. Доказать, что найдутся такие теннисисты <i>A, B, C</i>, что <i>A</i> выиграл у <i>B, B</i> у <i>C, C</i> у <i>A</i>. (В теннисе ничьих не бывает.)
На каждую чашку весов положили <i>k</i> гирь, занумерованных числами от 1 до <i>k</i>, причём левая чашка перевесила. Оказалось, что если поменять чашками любые две гири с одинаковыми номерами, то всегда либо правая чашка начинает перевешивать, либо чашки приходят в равновесие. При каких <i>k</i> это возможно?
В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.
Внутри правильного треугольника<i>ABC</i>лежит точка<i>O</i>. Известно, что$\angle$<i>AOB</i>= 113<sup><tt>o</tt></sup>,$\angle$<i>BOC</i>= 123<sup><tt>o</tt></sup>. Найти углы треугольника, стороны которого равны отрезкам<i>OA</i>,<i>OB</i>,<i>OC</i>.
На 99 карточках пишутся числа 1, 2, 3, ..., 99. Затем карточки перемешиваются, раскладываются чистыми сторонами вверх и на чистых сторонах снова пишутся числа 1, 2, 3, 4, ..., 99. Для каждой карточки числа, стоящие на ней, складываются и 99 полученных сумм перемножаются. Доказать, что в результате получится чётное число.