Олимпиадные задачи из источника «1972 год» для 9 класса - сложность 2-3 с решениями

На всех клетках шахматной доски 8×8 расставлены натуральные числа. Разрешается выделить любой квадрат размером 3×3 или 4×4 и увеличить все числа в нём на 1. Мы хотим в результате нескольких таких операций добиться, чтобы числа во всех клетках делились на 10. Всегда ли это удастся сделать?

Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят <i>n</i>, расположенные в порядке возрастания (<i>ряд Фарея</i>). Пусть <sup><i>a</i></sup>/<sub><i>b</i></sub> и <sup><i>c</i></sup>/<sub><i>d</i></sub> – какие-то два соседних числа (дроби несократимы). Доказать, что  |<i>bc – ad</i>| = 1.

На плоскости проведено 300 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее 100 треугольников.

Пусть <i>K</i>(<i>x</i>) равно числу таких несократимых дробей <sup><i>a</i></sup>/<sub><i>b</i></sub>, что  <i>a < x</i>  и  <i>b < x</i>  (<i>a</i> и <i>b</i> – натуральные числа). Например,  <i>K</i>(<sup>5</sup>/<sub>2</sub>) = 3  (дроби 1, 2, ½).

Вычислить сумму  <i>K</i>(100) + <i>K</i>(<sup>100</sup>/<sub>2</sub>) + <i>K</i>(<sup>100</sup>/<sub>3</sub>) + ... + <i>K</i>(<sup>100</sup>/<sub>99</sub>) + <i>K</i>(<sup>100</sup>/<sub>100</sub>).

В городе Никитовка двустороннее движение. В течение двух лет в городе проходил ремонт всех дорог. Вследствие этого в первый год на некоторых дорогах было введено одностороннее движение. На следующий год на этих дорогах было восстановлено двустороннее движение, а на остальных дорогах введено одностороннее движение. Известно, что в каждый момент ремонта можно было проехать из любой точки города в любую другую. Доказать, что в Никитовке можно ввести одностороннее движение так, что из каждой точки города удастся проехать в любую другую точку.

В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок.

В городе "Многообразие" живут<i>n</i>жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более чем один житель может начать новую жизнь: перессориться со всеми своими друзьями и подружиться со всеми своими врагами. Доказать, что все жители могут подружиться. <i>Примечание.</i>Если<i>A</i>— друг<i>B</i>, а<i>B</i>— друг<i>C</i>, то<i>A</i>— также друг<i>C</i>. Предполагается также, что среди любых троих жителей хотя бы двое дружат между собой.

В клетках шахматной доски размером <i>n×n</i> расставлены числа: на пересечении <i>k</i>-й строки и <i>m</i>-го столбца стоит число <i>a<sub>km</sub></i>. При любой расстановке на этой доске <i>n</i> ладей, при которой никакие две из них не бьют друг друга, сумма закрытых чисел равна 1972. Доказать, что существует два таких набора чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> и <i>y</i><sub>1</sub>, ..., <i>y<sub>n</sub></i>, что при всех <i>k</i> и <i>m</i> выполняется равенство  <i>a<sub>km</sub> = x<sub>k</sub> + y...

В треугольнике<i>ABC</i>проведены медианы<i>AD</i>и<i>BE</i>. Углы<i>CAD</i>и<i>CBE</i>равны30<sup><tt>o</tt></sup>. Доказать, что треугольник<i>ABC</i>правильный.

Имеется набор натуральных чисел, причём сумма любых семи из них меньше 15, а сумма всех чисел из набора равна 100.

Какое наименьшее количество чисел может быть в наборе?

Имеется 1000 монет, среди них 0, 1 или 2 фальшивые. Известно, что фальшивые монеты имеют одинаковую массу, отличную от массы нефальшивых монет. Можно ли за три взвешивания на чашечных весах без гирь определить, есть ли фальшивые монеты и легче они или тяжелее нормальных? (Количество монет определять не надо.)

На плоскости лежат две одинаковые фигуры, имеющие форму буквы Г&#039;&#039; . Концы коротких палочек у букв Г'' обозначим через<i>A</i>и<i>A'</i>. Длинные палочки разделены на<i>n</i>равных частей точками<i>a</i><sub>1</sub>, ...,<i>a</i><sub>n - 1</sub>;<i>a'</i><sub>1</sub>, ...,<i>a'</i><sub>n - 1</sub>(точки деления нумеруются от концов длинных палочек). Проводятся прямые<i>Aa</i><sub>1</sub>,<i>Aa</i><sub>2</sub>, ...,<i>Aa</i><sub>n - 1</sub>;<i>A'a</i><sup>$\scriptstyle \prime$</sup><sub>1</sub>,<i>A'a&...

В некоторых клетках квадратной таблицы <i>n</i>×<i>n</i> стоят звёздочки. Известно, что если вычеркнуть любой набор строк (только не все), то найдётся столбец ровно с одной невычеркнутой звёздочкой. (В частности, если строки совсем не вычёркивать, то столбец ровно с одной звёздочкой существует.) Доказать, что если вычеркнуть любой набор столбцов (только не все), то найдётся строка ровно с одной невычеркнутой звёздочкой.

В треугольнике<i>ABC</i>проведены медианы<i>AD</i>и<i>BE</i>. Углы<i>CAD</i>и<i>CBE</i>равны30<sup><tt>o</tt></sup>. Доказать, что<i>AB</i>=<i>BC</i>.

Каждая вершина правильного 13-угольника покрашена либо в чёрный, либо в белый цвет.

Доказать, что существуют три точки одного цвета, лежащие в вершинах равнобедренного треугольника.

В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.

Докажите, что этот лес можно огородить забором длиной 200 м.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка