Олимпиадные задачи из источника «1978 год» для 10 класса - сложность 1-3 с решениями
У белой сферы 12% её площади окрашено в красный цвет. Доказать, что в сферу можно вписать параллелепипед, у которого все вершины белые.
На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка<i>A</i>, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых.
Существует ли на плоскости конечный набор различных векторов$\overrightarrow{a_1}$,$\overrightarrow{a_2}$, ...,$\overrightarrow{a_n}$такой, что для любой пары различных векторов из этого набора найдётся такая другая пара из этого набора, что суммы каждой из пар равны между собой?
Найти все пары целых чисел (<i>x, y</i>), удовлетворяющие уравнению 3·2<sup><i>x</i></sup> + 1 = <i>y</i>².