Олимпиадные задачи из источника «11 класс» - сложность 1-5 с решениями

Докажите, что для любого  <i>k</i> > 1  найдётся такая степень двойки, что среди <i>k</i> последних её цифр не менее половины составляют девятки.

(Например,  2<sup>12</sup> = ...96,  2<sup>53</sup> = ...992.)

Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...

Из выпуклого многогранника с 9 вершинами, одна из которых<i>A</i>, параллельными переносами, переводящими<i>A</i>в каждую из остальных вершин, образуется 8 равных ему многогранников. Докажите, что хотя бы два из этих 8 многогранников пересекаются (по внутренним точкам).

В круглый бокал, осевое сечение которого — график функции<i>y</i>=<i>x</i><sup>4</sup>, опускают вишенку — шар радиуса<i>r</i>. При каком наибольшем<i>r</i>шар коснется нижней точки дна? (Другими словами, каков максимальный радиус<i>r</i>круга, лежащего в области<i>y</i>$\ge$<i>x</i><sup>4</sup>и содержащего начало координат?)

Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.

Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями:   <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|,  причём  0 ≤ <i>x</i><sub>1</sub> ≤ 1.

Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка