Олимпиадные задачи из источника «1999 год» - сложность 4 с решениями

Докажите, что первые цифры чисел вида 2<sup>2<sup>n</sup></sup> образуют непериодическую последовательность.

Решите в натуральных числах уравнение  (1 + <i>n<sup>k</sup></i>)<sup><i>l</i></sup> = 1 + <i>n<sup>m</sup></i>,  где  <i>l</i> > 1.

На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по направлению к ней. Длина прыжка равна половине расстояния до этой вершины.

Сможет ли кузнечик попасть в лунку?

Грани правильного октаэдра раскрашены в белый и черный цвет. При этом любые две грани, имеющие общее ребро, покрашены в разные цвета.

Докажите, что для любой точки внутри октаэдра сумма расстояний до плоскостей белых граней равна сумме расстояний до плоскостей черных граней.

Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.

Найдите расстановку чисел, при которой полученная сумма наибольшая.

Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть из точки x либо в точку x/3<sup>1/2</sup>, либо в точку x/3<sup>1/2</sup>+(1-(1/3<sup>1/2</sup>)). На отрезке [0,1] выбрана точка a.

Докажите, что, начиная из любой точки, кузнечик может через несколько прыжков оказаться на расстоянии меньше 1/100 от точки a.

В соревнованиях по <i>n</i>-борью участвуют 2<sup><i>n</i></sup> человек. Для каждого спортсмена известна его сила в каждом из видов программы. Соревнования проходят следующим образом: сначала все спортсмены участвуют в первом виде программы и лучшая половина из них выходит в следующий круг. Эта половина принимает участие в следующем виде и половина из них выходит в следующий круг, и т.д., пока в <i>n</i>-м виде программы не будет определен победитель. Назовем спортсмена <i>возможным победителем</i>, если можно так расставить виды спорта в программе, что он станет победителем.

  а) Докажите, что может так случиться, что хотя бы половина спортсменов является возможными победителями.

  б) Докажите, что число возможных по...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка