Олимпиадные задачи из источника «2010 год» - сложность 3 с решениями

  а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?

  А если богатырей

  б) десять?

  в) тридцать три?

Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить  12345 + 6 + 789 = 13140).  С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.

Докажите, что если числа <i>x, y, z</i> при некоторых значениях <i>p</i> и <i>q</i> являются решениями системы

     <i>y = x<sup>n</sup> + px + q,  z = y<sup>n</sup> + py + q,  x = z<sup>n</sup> + pz + q</i>,

то выполнено неравенство  <i>x</i>²<i>y + y</i>²<i>z + z</i>²<i>x ≥ x</i>²<i>z + y</i>²<i>x + z</i>²<i>y</i>.

Рассмотрите случаи   а)  <i>n</i> = 2;   б)  <i>n</i> = 2010.

В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.

Можно ли, применяя к числу 2 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в любом количестве и в любом порядке, получить число 2010?

Дана незамкнутая несамопересекающаяся ломаная из 37 звеньев. Через каждое звено провели прямую.

Какое наименьшее число различных прямых могло получиться?

На окружности расставлены 2009 чисел, каждое из которых равно 1 или –1, причём не все числа одинаковые. Рассмотрим всевозможные десятки подряд стоящих чисел. Найдём произведения чисел в каждом десятке и сложим их. Какая наибольшая сумма может получиться?

У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются <i>товарищами</i>, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?

В треугольнике<i> ABC </i>точка<i> I </i> — центр вписанной окружности. Точки<i> M </i>и<i> N </i> — середины сторон<i> BC </i>и<i> AC </i>соответственно. Известно, что угол<i> AIN </i>прямой. Докажите, что угол <i> BIM </i> — также прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка