Олимпиадные задачи из источника «8 класс» - сложность 2-5 с решениями
8 класс
НазадПо доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?
Верно ли, что из любого выпуклого четырёхугольника можно вырезать три уменьшенные вдвое копии этого четырёхугольника?
У входа на рынок есть двухчашечные весы без гирек, которыми каждый может воспользоваться по 2 раза в день. У торговца Александра есть 3 неотличимые внешне монеты весом 9, 10 и 11 грамм.— Как жаль, что я не могу за 2 взвешивания разобраться, какая из моих монет сколько весит!
— Да! — поддакнул его сосед Борис. — У меня совершенно та же ситуация — тоже 3 неотличимые на вид монеты весом 9, 10 и 11 грамм!
Докажите, что если они объединят усилия, то за отведённые им 4 взвешивания определят веса всех шести монет.
На стороне правильного восьмиугольника во внешнюю сторону построен квадрат. В восьмиугольнике проведены две диагонали, пересекающиеся в точке $B$ (см. рисунок). Найдите величину угла $ABC$.<i>(Многоугольник называется правильным, если все его стороны равны и все его углы равны.)</i><img src="/storage/problem-media/67014/problem_67014_img_2.png">
Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность $n - p$ также является простым числом.
Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?