Олимпиадные задачи из источника «14 (2016 год)» для 11 класса - сложность 3-5 с решениями

Дан остроугольный треугольник <i>ABC</i>. Пусть <i>A'</i> – точка, симметричная <i>A</i> относительно <i>BC, O<sub>A</sub></i> – центр окружности, проходящей через <i>A</i> и середины отрезков <i>A'B</i> и <i>A'C</i>. Точки <i>O<sub>B</sub></i> и <i>O<sub>C</sub></i> определяются аналогично. Найдите отношение радиусов описанных окружностей треугольников <i>ABC</i> и <i>O<sub>A</sub>O<sub>B</sub>O<sub>C</sub></i>.

Из точки <i>A</i> к окружности ω проведена касательная <i>AD</i> и произвольная секущая, пересекающая окружность в точках <i>B</i> и <i>C</i> (<i>B</i> лежит между точками <i>A</i> и <i>C</i>). Докажите, что окружность, проходящая через точки <i>C</i> и <i>D</i> и касающаяся прямой <i>BD</i>, проходит через фиксированную точку (отличную от <i>D</i>).

В выпуклой <i>n</i>-угольной призме равны все боковые грани. При каких <i>n</i> эта призма обязательно прямая?

Два квадрата расположены так, как показано на рисунке. Докажите, что площади заштрихованных четырёхугольников равны. <div align="center"><img src="/storage/problem-media/65649/problem_65649_img_2.png"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка