Олимпиадные задачи из источника «8 класс» - сложность 1-2 с решениями

На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?

На стороне<i> AC </i>треугольника<i> ABC </i>взята точка<i> D </i>так, что<i> AD:DC=</i>1<i>:</i>2. Докажите, что у треугольников<i> ADB </i>и<i> CDB </i>есть по равной медиане.

Мальчик стоит на автобусной остановке и мёрзнет, а автобуса нет. Ему хочется пройтись до следующей остановки. Мальчик бегает вчетверо медленнее автобуса и может увидеть автобус на расстоянии 2 км. До следующей остановки ровно километр. Имеет ли смысл идти, или есть риск упустить автобус?

Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.

Числа <i>a, b</i> и <i>c</i> отличны от нуля и выполняются равенства:  <i>a + <sup>b</sup></i>/<i><sub>c</sub> = b + <sup>c</sup></i>/<i><sub>a</sub> = c + <sup>a</sup></i>/<sub><i>b</i></sub> = 1.  Докажите, что  <i>ab + bc + ca</i> = 0.

Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка