Олимпиадные задачи из источника «10 турнир (1988/1989 год)» для 10 класса - сложность 2 с решениями

Даны 1000 линейных функций:  <i>f<sub>k</sub></i>(<i>x</i>) = <i>p<sub>k</sub>x + q<sub>k</sub></i>  (<i>k</i> = 1, 2, ..., 1000).  Нужно найти значение их композиции  <i>f</i>(<i>x</i>) = <i>f</i><sub>1</sub>(<i>f</i><sub>2</sub>(<i>f</i><sub>3</sub>(...<i>f</i><sub>1000</sub>(<i>x</i>)...)))  в точке <i>x</i><sub>0</sub>. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа...

Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

Докажите, что  <i>a</i>²<i>pq + b</i>²<i>qr + c</i>²<i>rp</i> ≤ 0,  если <i>a, b, c</i> – стороны треугольника; а <i>p, q, r</i> – любые числа, удовлетворяющие условию  <i>p + q + r</i> = 0.

Тетрадный лист раскрасили в 23 цвета по клеткам. Пара цветов называется хорошей, если существует две соседние клетки, закрашенные этими цветами. Каково минимальное число хороших пар?

Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.

Может ли сумма получившихся 14 чисел оказаться равной 0?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка