Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 10-11 класс» для 2-8 класса
осенний тур, тренировочный вариант, 10-11 класс
Назада) В треугольнике <i>ABC</i> угол <i>A</i> больше угла <i>B</i>. Докажите, что <i>BC</i> > ½ <i>AB</i>.
б) В выпуклом четырёхугольнике <i>ABCD</i> угол <i>A</i> больше угла <i>C</i>, а угол <i>D</i> больше угла <i>B</i>. Докажите, что <i>BC</i> > ½ <i>AD</i>.
Рассматривается последовательность квадратов на плоскости. Первые два квадрата со стороной 1 расположены рядом (второй правее) и имеют одну общую вертикальную сторону. Нижняя сторона третьего квадрата со стороной 2 содержит верхние стороны первых двух квадратов. Правая сторона четвёртого квадрата со стороной 3 содержит левые стороны первого и третьего квадратов. Верхняя сторона пятого квадрата со стороной 5 содержит нижние стороны первого, второго и четвертого квадратов. Далее двигаемся по спирали бесконечно, обходя рассмотренные квадраты против часовой стрелки так, что сторона нового квадрата составлена из сторон трёх ранее рассмотренных. Докажите, что центры всех этих квадратов принадлежат двум прямым.
Дан куб с ребром длины <i>n</i> см. В нашем распоряжении имеется длинный кусок изоляционной ленты шириной 1 см. Требуется обклеить куб лентой, при этом лента может свободно переходить через ребро на другую грань, по грани она должна идти по прямой параллельно ребру и не свисать с грани вбок. На сколько кусков необходимо разрезать ленту, чтобы обклеить куб?