Олимпиадные задачи по математике
Четырёхугольник <i>ABCD</i> вписанный, <i>M</i> – точка пересечения прямых <i>AB</i> и <i>CD, N</i> – точка пересечения прямых <i>BC</i> и <i>AD</i>. Известно, что <i>BM = DN</i>.
Докажите, что <i>CM = CN</i>.
а) В треугольнике <i>ABC</i> угол <i>A</i> больше угла <i>B</i>. Докажите, что <i>BC</i> > ½ <i>AB</i>.
б) В выпуклом четырёхугольнике <i>ABCD</i> угол <i>A</i> больше угла <i>C</i>, а угол <i>D</i> больше угла <i>B</i>. Докажите, что <i>BC</i> > ½ <i>AD</i>.
Несколько человек делят наследство. Наследник считается бедным, если ему досталось меньше 99 рублей, богатым, – если ему досталось больше 10000 рублей. Величина наследства и число людей таковы, что при любом способе дележа у богатых окажется не меньше денег, чем у бедных. Докажите, что при любом способе дележа у богатых не меньше чем в 100 раз больше денег, чем у бедных.
У нумизмата Феди все монеты имеют диаметр не больше 10 см. Он хранит их в плоской коробке размером 30×70 см (в один слой). Ему подарили монету диаметром 25 см. Докажите, что все монеты можно уложить в одну плоскую коробку размером 55×55 см.
В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.
Положительные числа <i>a, b, c, d</i> таковы, что <i>a ≤ b ≤ c ≤ d</i> и <i>a + b + c + d</i> ≥ 1. Докажите, что <i>a</i>² + 3<i>b</i>² + 5<i>c</i>² + 7<i>d</i>² ≥ 1.
На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)
Положительные числа <i>a, b, c</i> таковы, что <i>a ≥ b ≥ c</i> и <i>a + b + c</i> ≤ 1. Докажите, что <i>a</i>² + 3<i>b</i>² + 5<i>c</i>² ≤ 1.
Автомат при опускании гривенника выбрасывает пять двушек, а при опускании двушки – пять гривенников.
Может ли Петя, подойдя к автомату с одной двушкой, получить после нескольких опусканий одинаковое количество двушек и гривенников?