Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 8-9 класс» для 2-8 класса
осенний тур, тренировочный вариант, 8-9 класс
НазадНа плоскости отмечены несколько (больше трёх) точек. Известно, что если выкинуть любую точку, то оставшиеся будут симметричны относительно какой-нибудь прямой. Верно ли, что все множество точек тоже симметрично относительно какой-нибудь прямой?
По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?
В Колиной коллекции есть четыре царские золотые пятирублевые монеты. Коле сказали, что какие-то две из них фальшивые. Коля хочет проверить (доказать или опровергнуть), что среди монет есть ровно две фальшивые. Удастся ли ему это сделать с помощью двух взвешиваний на чашечных весах без гирь? (Фальшивые монеты одинаковы по весу, настоящие тоже одинаковы по весу, но фальшивые легче настоящих.)
Cлава перемножил первые <i>n</i> натуральных чисел, а Валера перемножил первые <i>m</i> чётных натуральных чисел (<i>n</i> и <i>m</i> больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.
В трапеции <i>ABCD</i> на боковой стороне <i>AB</i> дана точка <i>K</i>. Через точку <i>A</i> провели прямую <i>l</i>, параллельную прямой <i>KC</i>, а через точку <i>B</i> – прямую <i>m</i>, параллельную прямой <i>KD</i>. Докажите, что точка пересечения прямых <i>l</i> и <i>m</i> лежит на стороне <i>CD</i>.