Олимпиадные задачи из источника «39 турнир (2017/2018 год)» для 3-11 класса - сложность 3 с решениями

Дано натуральное число $n > 1$. Что больше: количество способов разрезать клетчатый квадрат $3n \times 3n$ на клетчатые прямоугольники $1 \times 3$ или количество способов разрезать клетчатый квадрат $2n \times 2n$ на клетчатые прямоугольники $1 \times 2$?

Можно ли расположить в пространстве пять сфер так, чтобы для каждой из сфер можно было провести через ее центр касательную плоскость к остальным четырем сферам? Сферы могут пересекаться и не обязаны иметь одинаковый радиус.

Имеется натуральное 1001-значное число $A$. 1001-значное число $Z$ – то же число $A$, записанное от конца к началу (например, для четырёхзначных чисел это могли быть 7432 и 2347). Известно, что $A > Z$. При каком $A$ частное $A/Z$ будет наименьшим (но строго больше 1)?

Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.

Правильный треугольник, лежащий в плоскости $\alpha$, ортогонально спроектировали на непараллельную ей плоскость $\beta$, полученный треугольник ортогонально спроектировали на плоскость $\gamma$ и получили снова правильный треугольник. Докажите, что

  а) угол между плоскостями $\alpha$ и $\beta$ равен углу между плоскостями $\beta$ и $\gamma$;

  б) плоскость $\beta$ пересекает плоскости $\alpha$ и $\gamma$ по перпендикулярным друг другу прямым.

В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение $a?b$ обозначает одно из следующих:  $a - b,  b - a$  или  $a + b$.  Вам неизвестно, как записываются числа в этом государстве, но переменные $a, b$ и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!", "?" записать выражение, которое гарантированно равно  $20a - 18b$.

В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?

В стране рыцарей (всегда говорят правду) и лжецов (всегда лгут) за круглым столом сидят в вершинах правильного десятиугольника 10 человек, среди которых есть лжецы. Путешественник может встать куда-то и спросить сидящих: "Каково расстояние от меня до ближайшего лжеца из вас?" После этого каждый отвечает ему. Какое минимальное количество вопросов должен задать путешественник так, чтобы гарантированно узнать, кто за столом лжецы? (Посторонних рядом нет, на стол вставать нельзя. Людей считайте точками. Все, включая путешественника, могут точно измерить любое расстояние.)

На улице дома стоят друг напротив друга, всего 50 пар. На правой стороне улицы расположены дома с чётными натуральными номерами, на левой – с нечётными натуральными номерами, номера возрастают от начала улицы к концу на каждой стороне, но идут не обязательно подряд (возможны пропуски). Для каждого дома на правой стороне улицы нашли разность между его номером и номером дома напротив, и оказалось, что все найденные числа различны. Наибольший номер дома на улице равен $n$. Найдите наименьшее возможное значение $n$.

Существуют ли такие 2018 положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных 2018 дробей?

В каждой вершине выпуклого многогранника сходятся три грани. Каждая грань покрашена в красный, жёлтый или синий цвет.

Докажите, что число вершин, в которых сходятся грани трёх разных цветов, чётно.

Город имеет вид квадрата $n\times n$, разбитого на кварталы 1×1. Улицы идут с севера на юг и с запада на восток. Человек каждый день утром идёт из юго-западного угла в северо-восточный, двигаясь только на север или восток, а вечером возвращается обратно, двигаясь только на юг или запад. Каждое утро он выбирает свой путь так, чтобы суммарная длина знакомых участков пути (тех, которые он уже проходил в том или ином направлении) была минимальна, и каждый вечер тоже. Докажите, что за $n$ дней он пройдёт все улицы целиком.

Дан треугольник $ABC$. Пусть $I$ – центр вневписанной окружности, касающейся стороны $AB$, а $A_1$ и $B_1$ – точки касания двух других вневписанных окружностей со сторонами $BC$ и $AC$ соответственно. Пусть $M$ – середина отрезка $IC$, а отрезки $AA_1$ и $BB_1$ пересекаются в точке $N$. Докажите, что точки $N$, $B_1$, $A$ и $M$ лежат на одной окружности.

Кусок сыра надо разрезать на части с соблюдением таких правил:

    вначале режем сыр на два куска, затем один из них режем на два куска, затем один из трёх кусков опять режем на два куска, и т.д.;

    после каждого разрезания части могут быть разными по весу, но отношение веса каждой части к весу любой другой должно быть строго больше заданного числа $R$.

  а) Докажите, что при  $R$ = 0,5  можно резать сыр так, что процесс никогда не остановится (после любого числа разрезаний можно будет отрезать ещё один кусок).

  б) Докажите, что если  $R$ > 0,5,  то процесс резки когда-нибудь остановится.

  в) На какое наибольшее число кусков можно разрезать сыр, если  $R$ = 0,6?

Покажите, что для любой последовательности $a_0$, $a_1$, ..., $a_n$, ..., состоящей из единиц и минус единиц, найдутся такие $n$ и $k$, что  $|a_0a_1...a_k  +   a_1a_2...a_{k+1}  +   ...   +  a_na_{n+1}...a_{n+k}| = 2017.$

Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры

  а) 20&times20 клеток;

  б) 50&times90 клеток?

Вписанная окружность касается сторон $AB, BC$ и $AC$ треугольника $ABC$ в точках $N, K$ и $M$ соответственно. Прямые $MN$ и $MK$ пересекают биссектрису внешнего угла $B$ в точках $R$ и $S$ соответственно. Докажите, что прямые $RK$ и $SN$ пересекаются на вписанной окружности треугольника $ABC$.

Цифры натурального числа  $n$ > 1  записали в обратном порядке и результат умножили на $n$. Могло ли получиться число, записываемое только единицами?

Было 100 дверей, у каждой свой ключ (отпирающий только эту дверь). Двери пронумерованы числами 1, 2, ..., 100, ключи тоже, но, возможно, с ошибками: номер ключа совпадает с номером двери или отличается на 1. За одну попытку можно выбрать любой ключ, любую дверь и проверить, подходит ли этот ключ к этой двери. Можно ли гарантированно узнать, какой ключ какую дверь открывает, сделав не более

  а) 99 попыток;

  б) 75 попыток;   в) 74 попытки.

В левой нижней клетке доски 100×100 стоит фишка. Чередуя горизонтальные и вертикальные ходы в соседнюю по стороне клетку (первый ход горизонтальный), она дошла сначала до левой верхней клетки, а потом до правой верхней. Докажите, что найдутся две такие клетки $A$ и $B$, что фишка не менее двух раз делала ход из $A$

в $B$.

а) Может ли шар некоторого радиуса высекать на гранях какого-нибудь правильного тетраэдра круги радиусов 1, 2, 3 и 4? б) Тот же вопрос для шара радиуса 5.

Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1).

Докажите, что участки этой окружности, проходящие по белым клеткам, составляют суммарно не более трети её длины.

На одной из клеток поля 8×8 зарыт клад. Вы находитесь с металлоискателем в центре одной из угловых клеток этого поля и передвигаетесь, переходя в центры соседних по стороне клеток. Металлоискатель срабатывает, если вы оказались на той клетке, где зарыт клад, или в одной из соседних с ней по стороне клеток. Можно ли гарантированно указать клетку, где зарыт клад, пройдя расстояние не более 26?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка