Олимпиадные задачи из источника «44 турнир (2022/2023 год)» для 7 класса
44 турнир (2022/2023 год)
НазадНа клетчатой доске 10×10 в одной из клеток сидит бактерия. За один ход бактерия сдвигается в соседнюю по стороне клетку и делится на две бактерии (обе остаются в той же клетке). Затем снова одна из сидящих на доске бактерий сдвигается в соседнюю по стороне клетку и делится на две, и так далее. Может ли после нескольких таких ходов во всех клетках оказаться поровну бактерий?
На сторонах равностороннего треугольника $ABC$ построены во внешнюю сторону треугольники $AB'C$, $CA'B$, $BC'A$ так, что получился шестиугольник $AB'CA'BC'$, в котором каждый из углов $A'BC'$, $C'AB'$, $B'CA'$ больше $120^\circ$, а для сторон выполняются равенства $AB'=AC'$, $BC'=BA'$, $CA'=CB'$. Докажите, что из отрезков $AB'$, $BC'$, $CA'$ можно составить треугольник.
Назовём натуральное число<i>хорошим</i>, если в его десятичной записи есть только нули и единицы. Пусть произведение двух хороших чисел оказалось хорошим числом. Правда ли, что тогда сумма цифр произведения равна произведению сумм цифр сомножителей? (В 44-м Турнире городов задача предлагалась в эквивалентной формулировке: <i>хорошие</i> числа были названы <i>заурядными</i>)
Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.
Барон Мюнхгаузен утверждает, что нарисовал многоугольник и точку внутри него так, что любая прямая, проходящая через эту точку, делит этот многоугольник на три многоугольника. Может ли барон быть прав?
Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.)
У Пети есть 8 монет, про которые он знает только, что 7 из них настоящие и весят одинаково, а одна фальшивая и отличается от настоящей по весу, неизвестно в какую сторону. У Васи есть чашечные весы – они показывают, какая чашка тяжелее, но не показывают, насколько. За каждое взвешивание Петя платит Васе (до взвешивания) одну монету из имеющихся у него. Если уплачена настоящая монета, Вася сообщит Пете верный результат взвешивания, а если фальшивая, то случайный. Петя хочет определить 5 настоящих монет и не отдать ни одну из этих монет Васе. Может ли Петя гарантированно этого добиться?
Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?
Можно ли расставить в клетках таблицы $6\times 6$ числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике $1\times 5$ (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023?